21988 View: Overview Glossary  HistCite Guide
Author(s)Liu J; Zhang TX; Lu TB; Qu LH; Zhou H; Zhang QL; Ji LN
TitleDNA-binding and cleavage studies of macrocyclic copper(II) complexes
SourceJOURNAL OF INORGANIC BIOCHEMISTRY 91 (1): 269-276
Date2002 JUL 25
TypeJournal : Article
LCR5   NCR: 33   LCS: 0   GCS: 25
Comment 
AddressZhongshan Univ, Sch Chem & Chem Engn, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Peoples R China.
Zhengzhou Plast Factory 3, Zhengzhou 450052, Peoples R China.
Key Lab Gene Engn Minist Educ, Sch Life Sci, Guangzhou 510275, Peoples R China.
ReprintJi, LN, Zhongshan Univ, Sch Chem & Chem Engn, State Key Lab Optoelect
Mat & Technol, Guangzhou 510275, Peoples R China.
AbstractThree hexaaza macrocyclic copper (H) complexes with different functional groups have been synthesized and characterized by elemental analysis and infrared spectra. Absorption and fluorescence spectral, cyclic voltammetric and viscometric studies have been carried out on the interaction of [CuL1]Cl-2 (L-1=3,10-bis(2-methylpyridine)- 1,3,5,8,10,12-hexaazacyclotetradecane), [CuL2]Cl-2 (L-2= 3,10-bis(2-propionitrile)-1,3,5,8,10,12-hexaazacyclotetradecane) and [CuL3]Cl-2 (L-3= 3,10-bis(2-hydroxyethyl)-1,3,5,8,10,12-hexaazacyclotetradecane) with calf thymus DNA. The results suggest that three complexes can bind to DNA by different binding modes. The spectroscopic studies together with viscosity experiments and cyclic voltammetry suggest that [CuL1]2+ could bind to DNA by partial intercalation via pyridine ring into the base pairs of DNA. [CuL2](2+) may bind to DNA by hydrogen bonding and hydrophobic interaction while [CuL3](2+) may be by weaker hydrogen bonding. The functional groups on the side chain of macrocycle play a key role in deciding the mode and extent of binding of complexes to DNA. Noticeably, the three complexes have been found to cleave double-strand pUC18 DNA in the presence of 2-mercaptoethanol and H2O2. (C) 2002 Elsevier Science Inc. All rights reserved.
CR BAGULEY BC, 1984, BIOCHEMISTRY-US, V23, P937
BARTON JK, 1986, COMMUN INORG CHEM, V19, P180
CHAND DK, 2001, INORG CHIM ACTA, V316, P71
DERVAN PB, 1986, SCIENCE, V232, P464
GESSNER RV, 1985, BIOCHEMISTRY-US, V24, P237
HARTSHORN RM, 1990, J AM CHEM SOC, V112, P4960
HAY RW, 1992, TRANSIT METAL CHEM, V17, P270
HECHT SM, 1986, ACCOUNTS CHEM RES, V19, P383
JOHNSTON DH, 1995, J AM CHEM SOC, V117, P8933
KECK MV, 1992, J AM CHEM SOC, V114, P3386
KELLY JM, 1985, NUCLEIC ACIDS RES, V13, P6017
LAKOWICZ JR, 1973, BIOCHEMISTRY-US, V12, P4161
LINCOLN P, 1996, CHEM COMMUN 0921, P2145
LIPPARD SJ, 1978, ACCOUNTS CHEM RES, V11, P211
LIU CL, 1999, J INORG BIOCHEM, V75, P233
LIU F, 1993, J AM CHEM SOC, V115, P6699
LIU HQ, 1996, CHEM COMMUN 0507, P1039
MARMUR J, 1961, J MOL BIOL, V3, P208
MORGAN RJ, 1991, INORG CHEM, V30, P2687
PANDIYAN T, 1995, J CHEM SOC DA, P455
PASTERNACK RF, 1983, BIOCHEMISTRY-US, V22, P2406
SATYANARAYANA S, 1993, BIOCHEMISTRY-US, V32, P2573
SIGMAN DS, 1979, J BIOL CHEM, V254, P2269
SIGMAN DS, 1986, ACCOUNTS CHEM RES, V19, P180
SIGMAN DS, 1990, BIOCHEMISTRY-US, V29, P9097
SITLANI A, 1992, J AM CHEM SOC, V114, P2303
TURRO NJ, 1991, ACCOUNTS CHEM RES, V24, P332
TYSOE SA, 1993, J PHYS CHEM-US, V97, P1707
WOLFE A, 1987, BIOCHEMISTRY-US, V26, P6392
XIONG Y, 1999, COORDIN CHEM REV, V185, P711
YANG G, 1997, J INORG BIOCHEM, V66, P141
ZHANG QL, 2001, J INORG BIOCHEM, V83, P49
ZOU XH, 1999, J CHEM SOC DALT 0507, P1423