Author(s) | Van Workum K; Douglas JF
|
---|
Title | Equilibrium polymerization in the Stockmayer fluid as a model of supermolecular self-organization
|
---|
Source | PHYSICAL REVIEW E 71 (3): Art. No. 031502
|
---|
Date | 2005 MAR
|
---|
Type | Journal : Review
|
---|
LCR: 19 NCR: 118 LCS: 0 GCS: 0
| Comment |
|
---|
Address | Natl Inst Stand & Technol, Div Polymers, Gaithersburg, MD 20899 USA.
|
---|
Reprint | Van Workum, K, Natl Inst Stand & Technol, Div Polymers, Gaithersburg,
MD 20899 USA.
|
---|
E-mail | kevin.vanworkum@nist.gov
jack.douglas@nist.gov
|
---|
Abstract | A diverse range of molecular self-organization processes arises from a competition between directional and isotropic van der Waals intermolecular interactions. We conduct Monte Carlo simulations of the Stockmayer fluid (SF) with a large dipolar interaction as a minimal self-organization model and focus on basic thermodynamic properties that are needed to characterize the polymerization transition that occurs in this fluid. In particular, we determine the polymerization transition lines from the maximum in the specific heat, C-v, and the inflection point in the extent of polymerization, Phi. We also characterize the geometry (radius of gyration R-g, chain length L, chain topology) of the clusters that form in this associating fluid as a function of temperature, T, and concentration, rho. The pressure, P, and the second virial coefficient, B-2, were determined, since these properties contain essential information about the strength of the isotropic (van der Waals) interactions. Our simulations indicate that the locations of the polymerization lines are quantitatively consistent with a model of equilibrium polymerization with the enthalpy of polymerization ("sticking energy") fixed by the minimum in the intermolecular potential. The polymerization transition in the SF is accompanied by a topological transition from predominantly linear to ring polymers upon cooling that is driven by the minimization of the dipolar energy of the clusters. We also find that the basic interaction parameters describing polymerization and phase separation in the SF can be estimated based on the existing theory of equilibrium polymerization, but the theory must be refined to account for ring formation in order to accurately describe the configurational properties of this model self-organizing fluid.
|
---|
CR |
AKAO JH, 1996, PHYS REV E A, V53, P6048
ALEXANDER EA, 1941, T FARADAY SOC, V37, P421
ALIVISATOS AP, 1996, NATURE, V382, P609
ALLEN MP, 1989, COMPUTER SIMULATION
BANKS T, 1977, NUCL PHYS B, V129, P493
BASTEA S, 2002, PHYS REV E, V66
BERKOVSKI B, 1996, MAGNETIC FLUIDS APPL
BISHOP M, 1986, J CHEM PHYS, V84, P444
BOAL AK, 2000, NATURE, V404, P746
BURCHARD W, 1992, MAKROMOL CHEM-M SYMP, V58, P21
BUTTER K, 2003, NAT MATER, V2, P88
CATES ME, 1990, J PHYS-CONDENS MAT, V2, P6869
CHEN B, 2001, J PHYS CHEM B, V105, P11275
CHEN CC, 2004, MACROMOLECULES, V37, P3905
CONIGLIO A, 1979, PHYS REV LETT, V42, P518
DAINTON FS, 1948, NATURE, V162, P705
DASGUPTA C, 1981, PHYS REV LETT, V47, P1556
DEGANS BJ, 2002, J PHYS CHEM B, V106, P9730
DEGENNES PG, 1970, PHYS KONDENS MATER, V11, P189
DIJKSTRA M, 1995, PHYS REV LETT, V75, P2236
DUDOWICZ J, 1999, J CHEM PHYS, V111, P7116
DUDOWICZ J, 2000, J CHEM PHYS, V112, P1002
DUDOWICZ J, 2000, J CHEM PHYS, V113, P434
DUDOWICZ J, 2003, J CHEM PHYS, V119, P12645
DUDOWICZ J, 2004, PHYS REV LETT, V92, AR045502
DUDOWICZ J, UNPUB
ECONOMOU IG, 1991, AICHE J, V37, P1875
ELDRIDGE JE, 1954, J PHYS CHEM-US, V58, P992
FALLER R, 2003, J CHEM PHYS, V119, P4405
FLORIANO MA, 1999, LANGMUIR, V15, P3143
FLYNN CE, 2003, ACTA MATER, V51, P5867
FREED KF, 1987, RENORMALIZATION GROU
GRANT MC, 1993, PHYS REV E, V47, P2606
GREER SC, 1996, ADV CHEM PHYS, V94, P261
GREER SC, 1998, J PHYS CHEM B, V102, P5413
GUIDA R, 1998, J PHYS A-MATH GEN, V31, P8103
HANSMANN UHE, 1997, CHEM PHYS LETT, V281, P140
HERZFELD J, 1996, ACCOUNTS CHEM RES, V29, P31
HIRSCHBERG JHKK, 2000, NATURE, V407, P167
HIRSCHFELDER JO, 1942, J CHEM PHYS, V10, P201
HIRSCHFELDER JO, 1954, MOL THEORY GASES LIQ
JACOBS IS, 1963, MAGNETISM, V3
JOHNSON CHJ, 1971, AUST J CHEM, V24, P1567
JORDAN PC, 1973, MOL PHYS, V25, P961
KALAMPOUNIAS AG, 2003, J CHEM PHYS, V118, P8640
KINDT JT, 2001, J CHEM PHYS, V114, P1432
KINDT JT, 2002, J PHYS CHEM B, V106, P8223
KISKIS J, 1993, J STAT PHYS, V73, P765
KLAPP S, 1999, PHYS REV E, V60, P3183
KOHRING G, 1986, PHYS REV LETT, V57, P1358
KRANBUEHL DE, 1992, MACROMOLECULES, V25, P2557
KULTANOV N, 1996, PHYS LETT A, V223, P189
KUMAR SK, 2001, PHYS REV LETT, V87, AR188301
LAMBERT JD, 1949, P ROY SOC LOND A MAT, V196, P8
LAVENDER HB, 1994, J CHEM PHYS, V101, P7856
LEHN JM, 1995, SUPRAMOLECULAR CHEM
LIU TB, 1999, LANGMUIR, V15, P3109
LYNDENBELL RM, 1997, J CHEM PHYS, V107, P1981
MAL S, 1995, MACROMOLECULES, V28, P2371
MCGROTHER SC, 1996, PHYS REV LETT, V76, P4183
MILCHEV A, 1995, PHYS REV E B, V52, P6431
MIRKIN CA, 1996, NATURE, V382, P607
MOORE JS, 1999, CURR OPIN COLLOID IN, V4, P108
MORAWETZ H, 1987, ANGEW CHEM INT EDIT, V26, P93
MOURCHID A, 1995, LANGMUIR, V11, P1942
NIRANJAN PS, 2003, J CHEM PHYS, V119, P4070
OSIPOV MA, 1996, PHYS REV E, V54, P2597
PHILIPSE AP, 2002, LANGMUIR, V18, P9977
PHILP D, 1996, ANGEW CHEM INT EDIT, V35, P1155
PITZER KS, 1955, J AM CHEM SOC, V77, P3427
POCHAN DJ, 2003, J AM CHEM SOC, V125, P11802
POTOFF JJ, 1998, J CHEM PHYS, V109, P10914
PUNTES VF, 2001, SCIENCE, V291, P2115
ROMEROENRIQUE JM, 2000, PHYS REV LETT, V85, P4558
ROMEROENRIQUE JM, 2002, PHYS REV E 1, V66, AR041204
ROSENSWEIG RE, 1985, FERROHYDRODYNAMICS
ROWLINSON JS, 1949, T FARADAY SOC, V45, P974
ROWLINSON JS, 1951, J CHEM PHYS, V19, P827
ROWLINSON JS, 1951, J CHEM PHYS, V19, P831
RUEB CJ, 1997, J RHEOL, V41, P197
SCHURTENBERGER P, 1996, LANGMUIR, V12, P2894
SEAR RP, 1996, PHYS REV LETT, V76, P2310
SHELLEY JC, 1995, J CHEM PHYS, V103, P8299
SHELLEY JC, 1999, PHYS REV E B, V59, P3065
SIJBESMA RP, 1997, SCIENCE, V278, P1601
STARR FW, 2003, J CHEM PHYS, V119, P1777
STEVENS MJ, 1995, PHYS REV E A, V51, P5962
STOCKMAYER WH, 1941, J CHEM PHYS, V9, P383
STOGRYN DE, 1969, J CHEM PHYS, V50, P4967
STUPP SI, 1993, SCIENCE, V259, P59
STUPP SI, 1997, SCIENCE, V276, P384
TAN HM, 1983, MACROMOLECULES, V16, P28
TANAKA F, 1989, PHYS REV LETT, V62, P2759
TAVARES JM, 1997, PHYS REV E, V56, P6252
TAVARES JM, 2002, PHYS REV E 1, V65, AR061201
TEIXEIRA PIC, 2000, J PHYS-CONDENS MAT, V12, PR411
TERECH P, 1997, CHEM REV, V97, P3133
TERECH P, 1998, BER BUNSEN PHYS CHEM, V102, P1630
TERECH P, 2000, J COLLOID INTERF SCI, V227, P363
TLUSTY T, 2000, SCIENCE, V290, P1328
TONER J, 1982, PHYS REV B, V26, PR462
TRIPISOVA B, 1998, INT J MOD PHYS B, V12, P543
VANLEEUWEN ME, 1993, PHYS REV LETT, V71, P3991
VANROIJ R, 1996, PHYS REV LETT, V76, P3348
VERDUIN H, 1995, J COLLOID INTERF SCI, V172, P425
WANG FG, 2001, PHYS REV LETT, V86, P2050
WEI DQ, 1992, PHYS REV LETT, V68, P2043
WENNERSTROM H, 1979, PHYS REP, V52, P1
WERTHEIM MS, 1984, J STAT PHYS, V35, P35
WERTHEIM MS, 1986, J STAT PHYS, V42, P459
WERTHEIM MS, 1986, J STAT PHYS, V42, P477
WERTHEIM MS, 1987, J CHEM PHYS, V87, P7323
WITTMER JP, 1998, J CHEM PHYS, V109, P834
WU MG, 1999, MOL PHYS, V97, P559
YAN QL, 2002, PHYS REV LETT, V88, AR095504
ZHANG YB, 2001, J CHEM PHYS, V114, P3299
ZHOU ZK, 1996, LANGMUIR, V12, P5016
ZHUANG JW, 1997, J CHEM PHYS, V107, P4705
|
---|
|