When I joined George N. Somero’s lab at the Scripps Institution of Oceanography in 1974, he was talking with Mary E. Clark of San Diego State University about evolution in a way not taught in my biology education. Their framework was the selection of the intracellular milieu and the crucial micromolecules—inorganic ions, small organic solutes, and H₂O—that define it. Biologists, they felt, were learning much about the function and evolution of macromolecules, but little on the nature of the environment in which they operated. A major question: Why are inorganic ion concentrations in cells limited to a fairly narrow range in most organisms? Most were known to accumulate costly organic solutes rather than salts. George and Mary noted from the literature that only a few types of solutes were used as osmolytes: some carbohydrates (e.g., polyols in marine algae), neutral free amino acids (e.g., most marine invertebrate phyla), and methylated amino compounds (e.g., many marine groups). Why?

Mary (and, independently, Wyn Jones in Wales) reasoned that amino acids are used because they are similar to certain inorganic salts (e.g., NH₄⁺, CO₂⁻), long known to stabilize protein structure. Unlike common cell ions (K⁺, Na⁺, Cl⁻), stabilizers might be raised to high levels without disturbing protein function. A.D. Brown and colleagues in Australia had that idea for polyols, after finding that high Na or KCl levels inhibit proteins of salt-tolerant and intolerant algae, while glycerol (the main osmolyte of the former) does not. They proposed that these were general properties of protein-solute-water interactions, rather than specific protein adaptations for function with osmolytes, coining the term “compatibility” for nonperturbation. Mary, in her lab, and Dave Bowlsus, in George’s lab, were testing amino acid osmolytes and were finding similar compatibility properties.

At that time, I noted that one osmolyte had not been explained: urea. This waste/osmolyte occurs up to 500m M in cartilaginous fishes (sharks, etc.), and as a well-known protein denaturant seemed clearly noncompatible. In dissertation work, I found that most enzymes from these fish were not adapted to work well in urea. However, sharks also have high levels of methylamine osmolytes (e.g., trimethylamine oxide). Inspired by Mary, I noted that these resembled the best protein-stabilizing cation, (CH₃)₄N⁺. My studies (later extended by Steve C. Hand) showed that urea and methylamines have opposite and offsetting effects on protein structure and function. George and I termed this net compatibility “counteraction.”

In 1980, while I was doing postdoctoral work in Scotland and Norway, George urged that we synthesize the numerous independent studies on osmolytes in various water stress conditions. Our resulting paper in Science has shown great longevity because it was the first complete review to cover universal properties, types, and distribution of osmolytes. Research (including my own) has expanded in the last decade; e.g., in 1985 at the NIH, osmolytes like those in marine organisms were found in the mammalian kidney (with its high urea and salt levels), a discovery directly inspired by our paper, with possible medical importance. Other practical potentials include in vitro preservation and engineering crops for saline water. And, a major osmolyte of marine phytoplankton has been called a key regulator of Earth’s climate via dimethylsulfide production and the cloud formation it may trigger (in the Gaia hypothesis)—an osmolyte system that may be crucial for our planet’s future!

4. Burg M B. Personal communication.

Received October 23, 1992