For large-scale genotoxicity screening in mammals, metaphase analysis of bone marrow cells is impractical. Searching for other endpoints of chromosome damage in hematological preparations from rodents, we demonstrated that scoring micronuclei in young polychromatic erythrocytes in bone marrow smears of mice is a sensitive, simple, and reliable method. [The SCI® indicates that this paper has been cited in over 365 publications.]

Mutagenicity Testing Must Be Practical
Werner Schmid
Institute of Medical Genetics
University of Zurich
CH-8001 Zurich
Switzerland
June 26, 1990

Mutation research in Drosophila had been my early field of research between 1957 and 1961. As an MD I then turned to cytogenetics and medical genetics. In 1967, when claims were raised about mutagenic side effects of pharmaceuticals, my help was sought, and for the next several years at the University of Zurich I devoted much of my time not to mutagenicity testing but first to working out useful in vivo test systems. Together with G.R. Staiger, I began with chromosome analyses in the bone marrow of Chinese hamsters. Despite a favorable karyotype (2n = 22), such work was not acceptable for toxicological screening. Since we had observed that treatments with classical mutagens caused severe hematological effects, I told K. Boller, a medical student, to analyse hematologically stained bone marrow smears.

The shift in proportions of different cell types proved to be inconsistent and difficult to quantify. In contrast, a number of nuclear anomalies showed a high degree of correlation with the results of our previous cytogenetical studies. To simplify matters I decided to concentrate future studies on the appearance of micronuclei in polychromatic erythrocytes. Micronuclei as a consequence of mitotic irregularities were, of course, known to cytologists since the time of Boveri. New, however, was the subsequent demonstration that micronuclei in young erythrocytes, after expulsion of the main nucleus, were an extremely useful feature apt for practical toxicological screening. Whoever wants to promote a new method should demonstrate its usefulness; therefore numerous basic methodological studies were performed, of which I wish to mention only two: B. Matter and P compared the test in six mammalian species and showed that the laboratory mouse was highly suitable. Ten model mutagens, not only clastogens, but spindle poisons as well, were evaluated by P. Maier and me.

Before directing my research interests, in the mid-1970s, to other fields, I concentrated on explaining and meticulously describing the test. In the beginning, we met with much criticism and scepticism on the part of cytogeneticists and mutation specialists but were greeted with enthusiasm by toxicologists who finally saw a light in their difficult task. In other circles, scepticism gave way to innumerable applications and applications of scoring micronuclei in all kinds of cell types and tissues, including human cells from precancerous and cancerous lesions. In toxicology the test was successfully automated. An overview of over 33 kinds of applications of micronuclei scoring was published in 1989.