This Week's Citation Classic

Berry M V. Uniform approximation for potential scattering involving a rainbow.
[H.H. Wills Physics Laboratory, University of Bristol, England]

This was the first paper in a series about quantum scattering near the classical limit. Approximations previously restricted to the neighbourhood of loci of classical orbits were extended so as also to be valid far from these singularities. [The SCI® indicates that this paper has been cited in over 115 publications.]

Quantum Asymptotics of Rainbows

M.V. Berry
H.H. Wills Physics Laboratory
University of Bristol
Bristol BS8 1TL
England

January 4, 1990

My work emerged naturally from the confluence of four streams. First was the experience and mastery of mathematical asymptotics (later distilled into a magnificent text) of my PhD supervisor, R.B. Dingle. Second was my attending, by chance, an inspiring series of lectures by J.L. Synge on the Hamiltonian theory of systems of rays as analogues of wavefields. Thus I arrived in Bristol in 1965, determined to fuse these approaches into a complete multidimensional extension of the WKBJ method, to yield a technique for getting approximations to quantum mechanics in the semiclassical limit (small Planck's constant).

A natural physical problem containing some of the difficulties of the general case soon presented itself: scattering of a beam of particles by a central field of force. This had been studied experimentally and theoretically in several contexts and especially by chemists wanting to determine interatomic and intermolecular potentials. The paper led me to the seminal works of K.W. Ford and L.A. Wheeler, published in 1959, which was the third of my streams. They discovered that the scattering cross-sections in the semiclassical limit are dominated by focal singularities of the family of parallel trajectories incident on the scatterer. Of several effects they studied, the most dramatic was the quantum rainbow. This is associated with an extremum of the classical deflection angle as a function of impact parameter. Close to the rainbow angle, Ford and Wheeler identified characteristic quantum oscillations caused by the interference of the two contributing classical paths. The oscillations were described by the same function that G.B. Airy had introduced in 1838 to describe the analogous effect in the optical rainbow. Their approximation captured the essence of the semiclassical singularity but failed to match the known nonsingular path contributions far from the rainbow. In the language of asymptotics, theirs was a transitional approximation, not uniformly valid in angle.

The fourth stream was the method for obtaining the desired approximations, developed by C. Chester, B. Friedman, and F. Ursell in 1957. They showed how to generalize the method of stationary phase for integrals so as to be uniformly valid when two stationary points coalesce as a parameter varies. My paper applied their technique to quantum scattering, identifying the integral as the Poisson-approximated sum over partial-wave angular momenta, the p: amenter as the observation (deflection) angle... and the coalescing stationary points as the contributing rays. The final formula was numerically very accurate and also simple in structure: The uniform approximation to the scattering amplitude is the sum of an Airy function and its derivative, with arguments and prefactors depending only on the actions of the two contributing classical paths (even when these are complex).

Because of this simplicity and accuracy, the result has been applied to the inversion of experimental scattering data. Uniform approximations—including those of more complicated type, involving the coalescence of more than two trajectories—have now applied routinely in scattering theory.