Fossil triterpenes, the "geohopanoids," ubiquitous and abundant in sediments, are useful in petroleum exploration. Their precursors, the "biohopanoids," are cholesterol surrogates stabilizing bacterial membranes, a role played in all living organisms by polyterpenoids. Biohopanoids form a phylogenetic series and may have played an important role in prebiotic chemistry. (The SCP® indicates that this paper has been cited in over 155 publications.)

Fossil Triterpenes Reveal Unrecognized Microbial Lipids

Guy Ourisson, Pierre Albrecht, and Michel Rohmer
Université Louis Pasteur and CNRS
F-67084 Strasbourg
and
Ecole Nationale Superieure de Chimie Mulhouse, France

February 25, 1990

Representatives of one triterpene family, the previously rarely found hopane derivatives, are always present in sediments and are very varied. Their ubiquity makes them probably the most abundant organic substances on Earth. Their varied structures (> 200 so far), linked to conditions of deposition and extent of maturation, provide criteria widely used in industry as an adjunct to classical methods of oil exploration (evaluation of maturation, source-rock/oil correlations)."Geohopanoids" derive from a previously unrecognized family of quite varied bacterial lipids, the highly amphiphilic "biohopanoids."

We have postulated, and it has been demonstrated, that biohopanoids are surrogates of cholesterol as reinforcing of biomembranes in many bacteria; more noble roles are probable, but not demonstrated, e.g., for hopanopeptide derivatives, or for an extraordinary C-adenosylhopanoid. We have also postulated, and it has been demonstrated in vitro and in vivo, that, in microorganisms lacking hopanoids and cholesterol, other families of polyterpenoids play a similar role in stabilizing biomembranes by being included as rigid, well-adapted and oriented inserts in the fluid matrix of the phospholipids. These include bacterial carotenoids; archaebacterial polyterpenic ether lipids; cycloartenol, which we have shown to be the biosynthetic precursor of sterols in plants; probably tricyclopolypropenols, the molecular fossils of which are present in many sediments; and possibly isoarborinol, a plant triterpene also found in several sediments. These substances can be arranged in a plausible phylogenetic sequence requiring the successive recruitment of new enzymatic reactions or progressive minor changes in similar enzymes.

We have even postulated a prebiotic origin for polyterpenoid phospholipids susceptible to form spontaneously vesicles, i.e., protocells.

Research continues on various fronts: the molecular constitution of the insoluble part of sedimentary organic matter—the kerogen, also rich in hopanoids and other terpenoids; the mechanisms of maturation of organic matter in soils and sediments; the identification of the organisms responsible for the huge accumulation of terpenoids in sediments, determined by microscopic studies or by isotopic enrichment; the study of the nonclassical biosynthetic pathways used by microorganisms to produce biohopanoids; the identification of the microbial lipids of protozoa and other little-studied phyta; the interpretation of the presence of "microbial" hopanoids in ferns; the biophysical study of postulated "primitive" polyterpenoids on model membranes; the abiotic formation of polyterpenic protocols; and so on. Other laboratories, with which we cooperate, study the enzymes involved in the biosynthesis of these polyterpenes.

Our work, helped by Institut Français du Pétrole, the ELF and Chevron oil companies, CNES, and others, has been very widely presented in invited lectures and has been generously rewarded, in particular by the Roussel Prize, the Heinrich Wieland Prize, the Alfred Treibs Prize, the Alexander von Humboldt Research Prize, several French prizes and, for the senior author (Ourisson), by his election to eight academies of sciences. However, on the whole, we feel that we have not generated the attention this field deserves, and this probably explains why most of our papers have not been widely cited. Petroleum companies do use "hopanograms" but do not publish, and microbial chemistry is not really fashionable any longer.

The Citation Classic paper is a short review. It is now superseded by references 3 and 6.