Angiotensin in the Brain?

R.K. Bickerton
Office of Cooperative Research
Yale University
New Haven, CT 06511

and
Joseph P. Buckley
Institute for Cardiovascular Studies
College of Pharmacy
University of Houston
Houston, TX 77004

December 12, 1988

This paper, which presents the first report of a centrally mediated effect of angiotensin II (ANGII), results from the doctoral research of RKB. The authors have collaborated, now as then, in preparing this commentary.

The demonstration of a central effect of ANGII was possible at that time because refinements in the cross-circulation preparation had been made by both the faculty and graduate students in the Department of Pharmacology, School of Pharmacy, University of Pittsburgh. Though not the major, or even primary, direction of the research, the data collected on ANGII have emerged as the most important. So many researchers at that time, including the authors, believed that ANGII was solely a peripherally acting peptide. Indeed, all data up to this report had confirmed the peripheral cardiovascular activity and had shown that the central nervous system (CNS) was not required for ANGII to induce a pressor response. Imagine, then, the feelings of a doctoral candidate who, anticipating only confirmation of the peripheral effects at the end of an experiment performed for other purposes, injected ANGII into the recipient animal in a crossed-circulation preparation and observed indication of a centrally mediated pressor response.

Dr. R.P. Halliday (then a graduate student), who later confirmed and extended the original research, was present; together we shared disbelief. The fact that the preparation had received other drugs and that the amount of leakage between head and body had not been determined allowed ready dismissal of a possible real effect. Though it was determined an hour or so later that the body and not the head had been injected, the facts that other drugs had been administered, that the observation was at the end of an experiment, and that everyone knew that ANGII did not have a central effect encouraged the students to question the result. However, the unexplained observation prompted experiments designed simply to test ANGII in preparations in which no other drugs had been previously administered. When the pressor effect in the recipient was again observed and the peripheral effect had also been replicated, the results were presented to others in the department.

Additional confirmatory experiments were performed, and some very preliminary investigations of the possible mechanisms of action suggested that ANGII increased sympathetic outflow from the CNS. These results were the subject of our paper. As we remember, the report was not met with universal acceptance but rather with a great deal of skepticism or outright disbelief. The confirmatory research of first Halliday, then C.M. Ferrario and many others established the fact that ANGII did indeed have a central locus of activity and confirmed that the central activity was not limited to the cardiovascular system. The report stimulated much research relating to the effect of ANGII (and other peptides) on the CNS. In the following years, further research it has stimulated. Over 40 papers have resulted from research in our laboratories on the central actions of ANGII and renin, including effects on midbrain structures, hemodynamic effects, and the development of experimental hypertension by chronically administering ANGII into cerebral ventricles of awake dogs.4 It was most satisfying to see the publications from so many investigators throughout the world on the physiology, biochemistry, and molecular biology of angiotensin and renin in the brain, especially the identification of a brain renin-angiotensin system by D. Ganten et al.5 There is no doubt today that ANGII does indeed have complex effects on the CNS.


This Week's Citation Classic®


[Cardiovascular Research Laboratories. Department of Pharmacology, School of Pharmacy, University of Pittsburgh, PA]