This Week’s Citation Classic

[Department of Anatomy, Harvard Medical School, Boston, MA]

Morphogenesis requires translocations of cellular position and transformations of cellular phenotype. In the early chick the primary mesenchyme derives from the epiblast. During this epithelial-mesenchymal transformation, the emigrating cells retain and maintain an aligned position in respect to the primitive streak. Close contacts between cells with apparent specializations at the plasmalemma were described between cells of similar and dissimilar phenotype. [The SCI® indicates that this paper has been cited in over 180 publications.]

Robert L. Trelstad
Department of Pathology
Robert Wood Johnson Medical School
University of Medicine & Dentistry of New Jersey
New Brunswick, NJ 08903

July 13, 1987

When I was at Columbia University as an undergraduate in the early 1960s, Lester Barth, Frances Ryan, and Tera Hayashi provoked me in a lifelong curiosity about the generation of three-dimensional form in the embryo. As a medical student at Harvard University in the mid-1960s, I had the opportunity to work with Elizabeth D. Hay and Jean-Paul Revel in the Department of Anatomy, then chaired by Don Fawcett.

During the summers and later, during a one-year leave of absence, I studied the organization of the chick embryo and electron microscopy, paying particular attention to the early stages of the chick. Interest in these early stages was spawned, in part, by reading "Cytology and Evolution" by E.N. Willmer; in this book he classified all cells from meta佐as into amoeocytes, mecha

One of the most exciting aspects of my studies of the early embryo was the special recognition of the cells, both mesenchymal and epithelial, were designed to behave as very polarized entities. I was able to follow cells from the epiblast to the primary mesenchyme and then watch this mesenchyme align to form the epithelial sheets of the visceral and parietal somatoderm and the epithelial surfaces of the somites; I could then follow the change of the somite epithelium back to a mesenchyme to become chondrocytes. While some may challenge the active voice of the previous sentence, the attention to cell positions and postures in static micrographs coupled with an a priori assumption that "order builds on order" helped recreate what seems to be an accurate description of these early stages of development. It also made me aware that epithelial and mesenchymal states were interchangeable; in fact, epithelial-mesenchymal transformations and cell polarity are recurrent themes in my later studies.

Contemporary work in 1963 by Jud D. Sheridan in the laboratory of David Potter and Ed Furshpan at Harvard Medical School indicated that the early cells in the chick gastrula were electrically coupled. I recall an afternoon with Sheridan, Hay, Revel, Furshpan, and Potter in which we pondered over my recent electron micrographs of the early embryo. We wondered if the focal points of contact between the epithelium and mesenchyme were possible sites of ion flow between the cells. Subsequent work by Revel and M.J. Karnovsky shifted focus to the gap junction, at that time an unknown but soon to be described contact specialization.

Efforts to improve the fixation of the early chick embryo led to countless hours in the cold room with an infusion apparatus in which I perfused osmium in various combinations and permutations with buffers, salts, and additives. From 1961 to 1965 the "quality" images required in Fawcett’s department were generated by “mass action” by fixing countless embryos, cutting countless sections, and taking countless micrographs. The advent of gluteraldehyde allowed me to obtain in 1966 even better and more consistent images, and such were the foundation of the manuscript.

The paper was written at the end of my last year at medical school and the first year of an internship in pathology at the Massachusetts General Hospital. The drafts that were submitted to Hay and Revel were returned with a letter unattributable to the first author. The final version was ultimately much of the red ink.

The paper was thus the typical marriage of a student’s labor and enthusiasm with a mentor’s patience and experience. While the paper is often cited for demonstrating contacts between epithelial and mesenchyme, it contains the germ of an idea that carries forward into current thinking, viz., the polarity of individual cells, both epithelial and mesenchymal, and the likelihood that some “rules” operate on these anisotropic elements to generate metazoan form. That obsession has only gotten broader and better.