This Week's Citation Classic


This paper brought together thermal data for H₂, HD, and D₂ in solid, liquid, and gaseous states, including distinctive properties of ortho and para forms of H₂ and D₂. A tentative entropy diagram for n-H₂ in the range of experimental data was also given. (The SCI® indicates that this paper has been cited in over 405 publications since 1955, making it the most-cited publication for this journal.)

Harold W. Woolley
Thermophysics Division
Center for Chemical Engineering
National Bureau of Standards
Gaithersburg, MD 20899

August 3, 1987

This compilation was in some way an outgrowth of the discovery of deuterium and of Ferdinand C. Brickwedde's connection with that event, and it is a credit to his planning, direction, and joint authorship as senior author. As a junior author then in his Low Temperature Section at the National Bureau of Standards (NBS), I spent an initial period learning the rules and notations of thermochemistry and recalling my instruction in quantum mechanics, in particular, its relevance to C₆ for H₂ as taught by D.M. Dennison at Michigan.

To get ideal gas functions for the ortho and para constituents of ordinary hydrogen, I calculated sums of states (or partition functions) and their temperature derivatives, involving rotational and vibrational spectroscopic data from the literature. For better extrapolation to higher temperatures, I applied a Dunham-type analysis to the potential, extending it further by my own variations of the Klein-Rydberg method. "Real gas" thermodynamic properties were obtained from ideal gas values using equations of state formulations in a form suggested by C.S. Cragoe of the bureau staff.

At lower temperatures, other local fitting procedures came into play. Ultimately, the process involved numerical smoothing along observed isotherms, interpolation to densities of chosen spacing, drawing of smooth isochores, and interpolation to the temperatures desired for the final table. This part of the fitting with further smoothing was carried out by R.B. Scott, who died in 1967.

As to two-phase equilibria, very sensitive data of Scott and Brickwedde on the dependence of vapor pressure on ortho-para composition of liquid H₂ were included. Study of the H₂ vapor pressure data suggested that ortho-ortho interactions formed a leading source of special energy effects in the liquid. Many data items were considered in producing the T-S diagram. The overall correlation across the coexistence region was the output of the draftsman, Robert N. Schwartz, one of several student assistants, as a result of his "visual" smoothing of irregularities in the numerical estimates presented to him.

The preparation of the hydrogen compilation paper extended through the period of World War II. There were a number of unrelated interruptions. For example, sometime after Belgium had been overrun, we were visited by a Marquis du Mazuel, who hoped his technical military experience could help in developing a CO₂ propellant assist for "bazooka type" rocket launching.

Later, an extensive program began, related to hopes for production of synthetic rubber (or "rubbah" as Franklin Roosevelt seemed to say it). Our laboratory's part involved calorimetry on relevant compounds from near "helium temperatures" upward to the vapor state. This was to determine the entropy of the vapor and thereby assist us in spectroscopic assignments needed for correct calculation of thermodynamic property values for the compounds in the "ideal gas state."

The subsequent establishment of the NBS Boulder laboratories has led to further improvement in thermodynamic knowledge. Numerous publications on hydrogen have resulted, as well as on other substances. A publication on deuterium is to appear shortly.

The many citations to this paper in the years since its first printing are due to the timeliness of the subject matter in view of the related technologies that have blossomed under various external stimuli and temporary national needs.

3. McCarty R D & Jung S. Thermodynamic properties of deuterium for temperatures from the triple point (18.71 K) to 423 K with pressure to 280 MPa. (In press.)