Nutrition Laboratory obliged us. Phillips chose the brown trout (Salmo trutta) as representative of propagated salmonids and carried out the analyses. The values for the trout were found to be very similar to those of Earle’s BSS and Hanks’s BSS—two widely used physiological salines.

Because he had derived the trout data, I asked Phillips if the new saline could bear his name; he demurred but accepted the name Cortland for the New York town for which the laboratory was named.

The Cortland “salt solution” proved to be wholly appropriate for freshwater teleost cells, but practical considerations limited our particular uses. True, when supplemented with serum and egg ultrafiltrate, the Cortland formulation supported growth of the RTG-2 line of rainbow trout cells. However, perfectly suitable “mammalian type” media and BSS were available commercially and at reasonable prices. It behooved us, therefore, to buy BSS and media for trout-cell propagation and to concentrate on virological applications. Empirical evidence had shown us that cell culture products designed for use with mammalian materials were wholly appropriate for freshwater teleost tissues and cells. In fact, BSS originally intended for mammals is also appropriate for birds, reptiles, amphibia, and teleosts. The cited paper was drafted to dispel popular misconceptions that teleosts are somehow “different” and to document the components of a physiological saline specifically tailored for teleosts.

One of the more vivid recollections of developing the new saline was determination of its freezing point. Never lavishly funded, we could not afford an osmometer. Instead, we were obliged to use a differential thermometer. Reuniting a separated mercury column and setting the instrument for maximum accuracy proved to be a challenge.