This paper was written to clarify the terminology of causal modeling and to demonstrate a simple algebraic method for computing and interpreting direct and indirect effects of variables in recursive path models. The paper shows how to compute indirect effects as differences between coefficients in successive reduced-form equations, estimated via multiple regression techniques. The method of path coefficients is primarily as a deductive method for predicting direct and indirect effects of variables in recursive path models, models where the flow of causation is unidirectional. Our paper stimulated a number of other papers on the calculation of indirect effects in nonlinear or nonadditive structural equation models and in nonrecursive models. This has been followed by work on the standard errors of the components of direct and indirect effects.

Our paper was published at a time when the popularity of causal modeling via path analysis was at its peak in sociology. Many research questions required the decomposition of effects into direct and indirect components. Our paper was used in several social scientific disciplines following the appearance of Duncan's introductory paper for sociologists, Blau and Duncan's national study of social mobility, and other widely cited applications.

Our paper made no claim of originality, and our work was heavily indebted to others, especially Finney and Duncan, Featherman, and Duncan. Rather, our goal was primarily didactic: the paper began as a handout to students in a graduate course on causal models that Alwin was teaching at Washington State University. It relied heavily on similar material developed by Hauser for his courses in multivariate data analysis, which Alwin had been exposed to as a graduate student at Wisconsin. Moreover, similar expositions were accessible in other publications that appeared at about the same time.

Our paper was written to clarify some of the terminology of causal modeling and to demonstrate a simple method for computing and interpreting direct and indirect effects of variables in recursive path models, models where the flow of causation is unidirectional. Our paper stimulated a number of other papers on the calculation of indirect effects in nonlinear or nonadditive structural equation models and in nonrecursive models. This has been followed by work on the standard errors of the components of direct and indirect effects.

Our paper made no claim of originality, and our work was heavily indebted to others, especially Finney and Duncan, Featherman, and Duncan. Rather, our goal was primarily didactic: the paper began as a handout to students in a graduate course on causal models that Alwin was teaching at Washington State University. It relied heavily on similar material developed by Hauser for his courses in multivariate data analysis, which Alwin had been exposed to as a graduate student at Wisconsin. Moreover, similar expositions were accessible in other publications that appeared at about the same time.

Our paper was published at a time when the popularity of causal modeling via path analysis was at its peak in sociology. Many research questions required the decomposition of effects into direct and indirect components. Our paper was used in several social scientific disciplines following the appearance of Duncan's introductory paper for sociologists, Blau and Duncan's national study of social mobility, and other widely cited applications.

Our paper was written to clarify some of the terminology of causal modeling and to demonstrate a simple method for computing and interpreting direct and indirect effects of variables in recursive path models, models where the flow of causation is unidirectional. Our paper stimulated a number of other papers on the calculation of indirect effects in nonlinear or nonadditive structural equation models and in nonrecursive models. This has been followed by work on the standard errors of the components of direct and indirect effects.

Our paper was published at a time when the popularity of causal modeling via path analysis was at its peak in sociology. Many research questions required the decomposition of effects into direct and indirect components. Our paper was used in several social scientific disciplines following the appearance of Duncan's introductory paper for sociologists, Blau and Duncan's national study of social mobility, and other widely cited applications.

Our paper was published at a time when the popularity of causal modeling via path analysis was at its peak in sociology. Many research questions required the decomposition of effects into direct and indirect components. Our paper was used in several social scientific disciplines following the appearance of Duncan's introductory paper for sociologists, Blau and Duncan's national study of social mobility, and other widely cited applications.

Our paper was published at a time when the popularity of causal modeling via path analysis was at its peak in sociology. Many research questions required the decomposition of effects into direct and indirect components. Our paper was used in several social scientific disciplines following the appearance of Duncan's introductory paper for sociologists, Blau and Duncan's national study of social mobility, and other widely cited applications.