Record 20306 View: Standard | Glossary HistCite Guide |
Author(s): Michaeli S (Michaeli, Shalom); Sorce DJ (Sorce, Dennis J.); Garwood M (Garwood, Michael)
Title: T-2 rho and T-1 rho adiabatic relaxations and contrasts
Source: CURRENT ANALYTICAL CHEMISTRY 4 (1): 8-25
Date: 2008 JAN
Document Type: Journal : Article
DOI:
Language: English
Comment:
Address: Univ Minnesota, Sch Med, Ctr Magnet Resonance Res, Minneapolis, MN 55455 USA.
Univ Minnesota, Sch Med, Dept Radiol, Minneapolis, MN 55455 USA. Reprint: Michaeli, S, Univ Minnesota, Sch Med, Ctr Magnet Resonance Res, 2021
6th St SE, Minneapolis, MN 55455 USA. E-mail: shalom@cmrr.umn.edu
Author Keywords: T-1 rho and T-2 rho relaxations and contrasts; adiabatic pulses
KeyWords Plus: NUCLEAR-MAGNETIC-RESONANCE; IN-VIVO; ROTATING-FRAME; CEREBRAL-ISCHEMIA;
PROTEIN HYDRATION; HUMAN BRAIN; TRANSVERSE RELAXATION; CHEMICAL-
EXCHANGE; AQUEOUS-SOLUTION; NMR-RELAXATION
Abstract: Transverse relaxation in the rotating frame (T-2 rho) is the dominant relaxation mechanism during a train of adiabatic full passage (AFP) radiofrequency (RF) pulses with no interpulse time intervals placed after the 90 degrees excitation pulse. The magnetization components remain transverse to the time-dependent effective field and undergo relaxation with the time constant T-2 rho. Longitudinal relaxation in the rotating frame (T-1 rho) is the dominant relaxation mechanism during a train of AFP RF pulses placed prior to an excitation pulse. Here, magnetization is aligned along the time-dependent effective field during adiabatic rotation undergoes relaxation with the time constant T-1 rho. A detailed description of rotating frame relaxations due to dipolar interactions and exchange during adiabatic pulses is presented herein. The exchange-induced and dipolar interaction contributions depend on the modulation functions of the adiabatic pulses used. The intrinsic rotating frame relaxation rate constant is sensitive to fluctuations at the effective frequencey (omega(eff)) in the rotating frame, and this is modulated differently during the two types of AFP pulses. This may lead to the possibility to assess T-1 rho and T-2 rho relaxation influenced by dipolar relaxation pathways and exchange in human brain tissue and provide a means to generate T-1 rho and T-2 rho contrasts in MRI.
Cited References: ABERGEL D, 2003, CONCEPT MAGN RESON A, V19, P134, DOI 10.1002/cmr.a.10091 AILION D, 1964, PHYS REV LETT, V12, P168 AKELLA SVS, 2004, MAGNET RESON MED, V52, P1103, DOI 10.1002/mrm.20241 ANDREW E, 1980, CLIN MAG RES IMAG SP ATSARKIN VA, 1984, ZH EKSP TEOR FIZ, V60, P162 BARTHA R, 2002, MAGNET RESON MED, V47, P742 BLICHARSKI JS, 1972, ACTA PHYS POL A, V41, P223 BORTHAKUR A, 2006, J MAGN RESON IMAGING, V24, P1011, DOI 10.1002/jmri.20751 BURGHARDT I, 1992, MOL PHYS, V75, P467 CASIERI C, 2002, J MAGN RESON, V159, P62 CASIERI C, 2002, J NON-CRYST SOLIDS, V307, P744 CECKLER T, 2001, J MAGN RESON, V151, P9 DASZKIEWICZ OK, 1963, NATURE, V200, P1006 DAVIS DG, 1994, J MAGN RESON SER B, V104, P266 DENISOV VP, 1996, FARADAY DISCUSS, V103, P227 DESVAUX H, 1994, J MAGN RESON SER A, V108, P219 DUVVURI U, 2001, CANCER RES, V61, P7747 FISCHER MWF, 1998, PROG NUCL MAG RE 3-4, V33, P207 GARWOOD M, 2001, J MAGN RESON, V153, P155 GROHN OHJ, 1999, MAGNET RESON MED, V42, P268 GROHN OHJ, 2000, J CEREBR BLOOD F MET, V20, P1457 GROHN OHJ, 2003, MAGNET RESON MED, V49, P172, DOI 10.1002/mrm.10356 GRUETTER R, 2000, MAGNET RESON MED, V43, P319 HAASE A, 1990, MAGN RESON MED, V13, P77 HAKUMAKI JM, 2002, CANCER GENE THER, V9, P338 KETTUNEN MI, 2001, MAGNET RESON MED, V46, P565 KUMAR A, 2000, PROG NUCL MAG RES SP, V37, P191 KUWATA K, 1995, J MAGN RESON SER A, V114, P219 LEE JH, 2003, MAGNET RESON MED, V49, P450, DOI 10.1002/mrm.10402 LEVITT MH, 1982, J MAGN RESON, V47, P328 LI X, 2005, MAGNET RESON MED, V53, P724, DOI 10.1002/mrm.20405 LIPARI G, 1982, J AM CHEM SOC, V104, P4546 LUCA FD, 1997, J MAGN RESON, V126, P159 LUCA FD, 1999, J MAGN RESON, V139, P126 MARSHALL AG, 1970, J CHEM PHYS, V52, P2527 MEFED AE, 1984, SOV PHYS JETP, V59, P172 MICHAELI S, 2002, MAGNET RESON MED, V47, P629 MICHAELI S, 2003, P INT SOC MAG RES ME, P1103 MICHAELI S, 2004, J MAGN RESON, V169, P293, DOI 10.1016/j.jmr.2004.05.010 MICHAELI S, 2005, MAGNET RESON MED, V53, P823, DOI 10.1002/mrm.20428 MICHAELI S, 2005, P 46 EXP NUCL MAG RE MICHAELI S, 2006, J MAGN RESON, V181, P138 MICHAELI S, 2007, MOVEMENT DISORD, V22, P334, DOI 10.1002/mds.21227 NIKOLOVA S, 2006, J MAGN RESON, V181, P35, DOI 10.1016/j.jmr.2006.03.013 OTTING G, 1991, SCIENCE, V254, P974 PALMER AG, 2001, METHOD ENZYMOL B, V339, P204 PFEUFFER J, 2002, MAGN RESON MED, V47, P344 PITKANEN A, 2002, PROG BRAIN RES, V135, P67 POPTANI H, 2001, ACAD RADIOL, V8, P42 PRATICO D, 1999, ATHEROSCLEROSIS, V147, P1 QUIRK JD, 2003, MAGNET RESON MED, V50, P493, DOI 10.1002/mrm.10565 REGATTE RR, 2006, J MAGN RESON IMAGING, V23, P547, DOI 10.1002/jmri.20536 SANTYR GE, 1994, MAGNET RESON MED, V32, P43 SEPPONEN R, 1995, J COMPUT ASSIST TOMO, V9, P1007 SEPPONEN RE, 1985, J COMPUT ASSIST TOMO, V9, P1007 SOLOMON I, 1955, PHYS REV, V99, P559 SOLOMON I, 1959, PHYS REV LETT, V2, P301 SORCE D, 2005, J MAGN RESON, V179, P25 TANNUS A, 1996, J MAGN RESON SER A, V120, P133 TANNY SR, 1973, J AM CHEM SOC, V95, P6227 TKAC I, 1999, MAGNET RESON MED, V41, P649 VENU K, 1997, J AM CHEM SOC, V119, P3122 VUGMEYSTER L, 2004, CR PHYS, V5, P377 WHEATON AJ, 2004, MAGNET RESON MED, V52, P1223, DOI 10.1022/mrm.20284 WOESSNER DE, 1961, J CHEM PHYS, V35, P41 WOESSNER DE, 1963, J PHYS CHEM-US, V67, P1590 WOLFF SD, 1989, MAGN RESON MED, V10, P135 |