Record 20306   View: Standard Glossary  HistCite Guide
Author(s): Michaeli S (Michaeli, Shalom); Sorce DJ (Sorce, Dennis J.); Garwood M (Garwood, Michael)
Title: T-2 rho and T-1 rho adiabatic relaxations and contrasts
Source: CURRENT ANALYTICAL CHEMISTRY 4 (1): 8-25
Date: 2008 JAN
Document Type: Journal : Article
DOI:  
Language: English
Comment:  
Address: Univ Minnesota, Sch Med, Ctr Magnet Resonance Res, Minneapolis, MN 55455 USA.
Univ Minnesota, Sch Med, Dept Radiol, Minneapolis, MN 55455 USA.
Reprint: Michaeli, S, Univ Minnesota, Sch Med, Ctr Magnet Resonance Res, 2021
6th St SE, Minneapolis, MN 55455 USA.
E-mail: shalom@cmrr.umn.edu
Author Keywords: T-1 rho and T-2 rho relaxations and contrasts; adiabatic pulses
KeyWords Plus: NUCLEAR-MAGNETIC-RESONANCE; IN-VIVO; ROTATING-FRAME; CEREBRAL-ISCHEMIA; PROTEIN HYDRATION; HUMAN BRAIN; TRANSVERSE RELAXATION; CHEMICAL- EXCHANGE; AQUEOUS-SOLUTION; NMR-RELAXATION
Abstract: Transverse relaxation in the rotating frame (T-2 rho) is the dominant relaxation mechanism during a train of adiabatic full passage (AFP) radiofrequency (RF) pulses with no interpulse time intervals placed after the 90 degrees excitation pulse. The magnetization components remain transverse to the time-dependent effective field and undergo relaxation with the time constant T-2 rho. Longitudinal relaxation in the rotating frame (T-1 rho) is the dominant relaxation mechanism during a train of AFP RF pulses placed prior to an excitation pulse. Here, magnetization is aligned along the time-dependent effective field during adiabatic rotation undergoes relaxation with the time constant T-1 rho. A detailed description of rotating frame relaxations due to dipolar interactions and exchange during adiabatic pulses is presented herein. The exchange-induced and dipolar interaction contributions depend on the modulation functions of the adiabatic pulses used. The intrinsic rotating frame relaxation rate constant is sensitive to fluctuations at the effective frequencey (omega(eff)) in the rotating frame, and this is modulated differently during the two types of AFP pulses. This may lead to the possibility to assess T-1 rho and T-2 rho relaxation influenced by dipolar relaxation pathways and exchange in human brain tissue and provide a means to generate T-1 rho and T-2 rho contrasts in MRI.
Cited References:
ABERGEL D, 2003, CONCEPT MAGN RESON A, V19, P134, DOI 10.1002/cmr.a.10091
AILION D, 1964, PHYS REV LETT, V12, P168
AKELLA SVS, 2004, MAGNET RESON MED, V52, P1103, DOI 10.1002/mrm.20241
ANDREW E, 1980, CLIN MAG RES IMAG SP
ATSARKIN VA, 1984, ZH EKSP TEOR FIZ, V60, P162
BARTHA R, 2002, MAGNET RESON MED, V47, P742
BLICHARSKI JS, 1972, ACTA PHYS POL A, V41, P223
BORTHAKUR A, 2006, J MAGN RESON IMAGING, V24, P1011, DOI 10.1002/jmri.20751
BURGHARDT I, 1992, MOL PHYS, V75, P467
CASIERI C, 2002, J MAGN RESON, V159, P62
CASIERI C, 2002, J NON-CRYST SOLIDS, V307, P744
CECKLER T, 2001, J MAGN RESON, V151, P9
DASZKIEWICZ OK, 1963, NATURE, V200, P1006
DAVIS DG, 1994, J MAGN RESON SER B, V104, P266
DENISOV VP, 1996, FARADAY DISCUSS, V103, P227
DESVAUX H, 1994, J MAGN RESON SER A, V108, P219
DUVVURI U, 2001, CANCER RES, V61, P7747
FISCHER MWF, 1998, PROG NUCL MAG RE 3-4, V33, P207
GARWOOD M, 2001, J MAGN RESON, V153, P155
GROHN OHJ, 1999, MAGNET RESON MED, V42, P268
GROHN OHJ, 2000, J CEREBR BLOOD F MET, V20, P1457
GROHN OHJ, 2003, MAGNET RESON MED, V49, P172, DOI 10.1002/mrm.10356
GRUETTER R, 2000, MAGNET RESON MED, V43, P319
HAASE A, 1990, MAGN RESON MED, V13, P77
HAKUMAKI JM, 2002, CANCER GENE THER, V9, P338
KETTUNEN MI, 2001, MAGNET RESON MED, V46, P565
KUMAR A, 2000, PROG NUCL MAG RES SP, V37, P191
KUWATA K, 1995, J MAGN RESON SER A, V114, P219
LEE JH, 2003, MAGNET RESON MED, V49, P450, DOI 10.1002/mrm.10402
LEVITT MH, 1982, J MAGN RESON, V47, P328
LI X, 2005, MAGNET RESON MED, V53, P724, DOI 10.1002/mrm.20405
LIPARI G, 1982, J AM CHEM SOC, V104, P4546
LUCA FD, 1997, J MAGN RESON, V126, P159
LUCA FD, 1999, J MAGN RESON, V139, P126
MARSHALL AG, 1970, J CHEM PHYS, V52, P2527
MEFED AE, 1984, SOV PHYS JETP, V59, P172
MICHAELI S, 2002, MAGNET RESON MED, V47, P629
MICHAELI S, 2003, P INT SOC MAG RES ME, P1103
MICHAELI S, 2004, J MAGN RESON, V169, P293, DOI 10.1016/j.jmr.2004.05.010
MICHAELI S, 2005, MAGNET RESON MED, V53, P823, DOI 10.1002/mrm.20428
MICHAELI S, 2005, P 46 EXP NUCL MAG RE
MICHAELI S, 2006, J MAGN RESON, V181, P138
MICHAELI S, 2007, MOVEMENT DISORD, V22, P334, DOI 10.1002/mds.21227
NIKOLOVA S, 2006, J MAGN RESON, V181, P35, DOI 10.1016/j.jmr.2006.03.013
OTTING G, 1991, SCIENCE, V254, P974
PALMER AG, 2001, METHOD ENZYMOL B, V339, P204
PFEUFFER J, 2002, MAGN RESON MED, V47, P344
PITKANEN A, 2002, PROG BRAIN RES, V135, P67
POPTANI H, 2001, ACAD RADIOL, V8, P42
PRATICO D, 1999, ATHEROSCLEROSIS, V147, P1
QUIRK JD, 2003, MAGNET RESON MED, V50, P493, DOI 10.1002/mrm.10565
REGATTE RR, 2006, J MAGN RESON IMAGING, V23, P547, DOI 10.1002/jmri.20536
SANTYR GE, 1994, MAGNET RESON MED, V32, P43
SEPPONEN R, 1995, J COMPUT ASSIST TOMO, V9, P1007
SEPPONEN RE, 1985, J COMPUT ASSIST TOMO, V9, P1007
SOLOMON I, 1955, PHYS REV, V99, P559
SOLOMON I, 1959, PHYS REV LETT, V2, P301
SORCE D, 2005, J MAGN RESON, V179, P25
TANNUS A, 1996, J MAGN RESON SER A, V120, P133
TANNY SR, 1973, J AM CHEM SOC, V95, P6227
TKAC I, 1999, MAGNET RESON MED, V41, P649
VENU K, 1997, J AM CHEM SOC, V119, P3122
VUGMEYSTER L, 2004, CR PHYS, V5, P377
WHEATON AJ, 2004, MAGNET RESON MED, V52, P1223, DOI 10.1022/mrm.20284
WOESSNER DE, 1961, J CHEM PHYS, V35, P41
WOESSNER DE, 1963, J PHYS CHEM-US, V67, P1590
WOLFF SD, 1989, MAGN RESON MED, V10, P135