Record 8543   View: Standard Glossary  HistCite Guide
Author(s): Spyrakis F (Spyrakis, Francesca); Amadasi A (Amadasi, Alessio); Fornabaio M (Fornabaio, Micaela); Abraham DJ (Abraham, Donald J.); Mozzarelli A (Mozzarelli, Andrea); Kellogg GE (Kellogg, Glen E.); Cozzini P (Cozzini, Pietro)
Title: The consequences of scoring docked ligand conformations using free energy correlations
Source: EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY 42 (7): 921-933
Date: 2007 JUL
Document Type: Journal : Article
DOI: 10.1016/j.ejmech.2006.12.037
Language: English
Comment:  
Address: Virginia Commonwealth Univ, Inst Struct Biol & Drug Discovery, Dept Med Chem, Richmond, VA 23298 USA.
Univ Parma, Dept Biochem & Mol Biol, I-43100 Parma, Italy.
Univ Parma, Dept Gen & Inorgan Chem, I-43100 Parma, Italy.
Reprint: Kellogg, GE, Virginia Commonwealth Univ, Inst Struct Biol & Drug
Discovery, Dept Med Chem, Med Coll Virginia Campus, Richmond, VA 23298
USA.
E-mail: glen.kellogg@vcu.edu
pictro.cozzini@unipr.it
Author Keywords: HINTS; docking; free energy scoring; hydropathic analysis
KeyWords Plus: INCREMENTAL CONSTRUCTION ALGORITHM; ARABINOSE-BINDING PROTEIN; CRYSTAL- STRUCTURES; DRUG DESIGN; INTUITIVE CALCULATIONS; AUTOMATED DOCKING; GENETIC ALGORITHM; 3-DIMENSIONAL STRUCTURES; THROMBIN INHIBITORS; STRUCTURAL-ANALYSIS
Abstract: Ligands from a set of 19 protein-ligand complexes were re-docked with AutoDock, GOLD and FlexX using the scoring algorithms native to these programs supplemented by analysis using the HINT free energy force field. A HINT scoring function was calibrated for this data set using a simple linear regression of total HINT score for crystal-structure complexes vs. measured free energy of binding. This function had an r(2) of 0.84 and a standard error of 0.42 kcal mol(-1). The free energies of binding were calculated for the best poses using the AutoDock, GOLD and FlexX scoring, functions. The AutoDock and GoIdScore algorithms estimated more than half of the binding free energies within the reported calibration standard errors for these functions, while that of FlexX did not. In contrast, the calibrated HINT scoring function identified optimized poses with standard errors near +/- 0.5 kcal mol(-1). When the metric of success is minimum RMSD (vs. crystallographic coordinates) the three docking programs were more successful, with mean RMSDs for the top-ranking poses in the 19 complexes of 3.38, 2.52 and 2.62 angstrom for AntoDock, GOLD and FlexX, respectively. Two key observations in this study have general relevance for computational medicinal chemistry: first, while optimizing RMSD with docking score functions is clearly of value, these functions may be less well optimized for free energy of binding, which has broader applicability in virtual screening and drug discovery than RMSD; second, scoring functions uniquely calibrated for the data set or sets under stud), should nearly always be preferable to universal scoring functions. Due to these advantages, the poses selected by the HINT score also required less post-docking structure optimization to produce usable molecular models. Most of these features may be achievable with other scoring functions. (c) 2007 Elsevier Masson SAS. All rights reserved.
Cited References:
ABAGYAN R, 1994, J COMPUT CHEM, V15, P488
AMADASI A, 2006, J MOL BIOL, V358, P289, DOI 10.1016/j.jmb.2006.01.053
AMARI G, 2004, BIOORGAN MED CHEM, V12, P3763, DOI 10.1016/j.bmc.2004.05.015
BADGER J, 1988, P NATL ACAD SCI USA, V85, P3304
BADGER J, 1989, PROTEINS, V6, P1
BERMAN HM, 2000, NUCLEIC ACIDS RES, V28, P235
BISSANTZ C, 2000, J MED CHEM, V43, P4759
BOHM HJ, 1994, J COMPUT AID MOL DES, V8, P243
BOREK D, 2003, ACTA CRYSTALLOGR 11, V59, P2031, DOI 10.1107/S0907444903020924
BRANDSTETTER H, 1992, J MOL BIOL, V226, P1085
BURNETT JC, 2000, BIOCHEMISTRY-US, V39, P1622
BURNETT JC, 2001, PROTEINS, V42, P355
BURSULAYA BD, 2003, J COMPUT AID MOL DES, V17, P755
CARD GL, 2005, NAT BIOTECHNOL, V23, P201, DOI 10.1038/nbt1059
CHARIFSON PS, 1999, J MED CHEM, V42, P5100
CHARIFSON PS, 2002, J COMPUT AID MOL DES, V16, P311
CHEN HM, 2006, J CHEM INF MODEL, V46, P401, DOI 10.1021/ci0503255
CHIRGADZE NY, 2000, PROTEIN SCI, V9, P29
CLARK RD, 2002, J MOL GRAPH MODEL, V20, P281
COLE JC, 2005, PROTEINS, V60, P325, DOI 10.1002/prot.20497
COZZINI P, 2002, J MED CHEM, V45, P2469
COZZINI P, 2004, CURR MED CHEM, V11, P3093
DAVIS AM, 2003, ANGEW CHEM INT EDIT, V42, P2718, DOI 10.1002/anie.200200539
DEREWENDA ZS, 1995, J MOL BIOL, V252, P248
EALICK SE, 1991, P NATL ACAD SCI USA, V88, P11540
FERRARA P, 2004, J MED CHEM, V47, P3032, DOI 10.1021/jm030489h
FORNABAIO M, 2003, J MED CHEM, V46, P4487, DOI 10.1021/jm0302593
FORNABAIO M, 2004, J MED CHEM, V47, P4507, DOI 10.1021/jm030596b
FRIESNER RA, 2004, J MED CHEM, V47, P1739, DOI 10.1021/jm0306430
GIBSON AL, 1988, PROTEINS, V3, P155
GOHLKE H, 2000, J MOL BIOL, V295, P337
GOODFORD PJ, 1985, J MED CHEM, V28, P849
GOODSELL DS, 1990, PROTEINS, V8, P195
GUDDAT LW, 1994, J MOL BIOL, V236, P247
HA S, 2000, J COMPUT AID MOL DES, V14, P435
HOFFMANN D, 1999, J MED CHEM, V42, P4422
HUAI Q, 2003, STRUCTURE, V11, P865, DOI 10.1016/S0969-2126(03)00123-0
JONES G, 1995, J MOL BIOL, V245, P43
JONES G, 1997, J MOL BIOL, V267, P727
KELLENBERGER E, 2004, PROTEINS, V57, P225, DOI 10.1002/prot.20149
KELLOGG GE, 1992, MED CHEM RES, V1, P444
KELLOGG GE, 1999, MED CHEM RES, V9, P439
KELLOGG GE, 2000, EUR J MED CHEM, V35, P651
KLEYWEGT GJ, 1994, STRUCTURE, V2, P1241
KONTOYIANNI M, 2004, J MED CHEM, V47, P558, DOI 10.1021/jm0302997
KRAMER B, 1999, PROTEINS, V37, P228
KROEMER RT, 2004, J CHEM INF COMP SCI, V44, P871, DOI 10.1021/ci049970m
LALONDE JM, 1994, BIOCHEMISTRY-US, V33, P4885
LYBRAND TP, 1995, CURR OPIN STRUC BIOL, V5, P224
MAKINO S, 1997, J COMPUT CHEM, V18, P1812
MCMARTIN C, 1997, J COMPUT AID MOL DES, V11, P333
MILLER DM, 1983, J BIOL CHEM, V258, P3665
MORRIS GM, 1996, J COMPUT AID MOL DES, V10, P293
MORRIS GM, 1998, J COMPUT CHEM, V19, P1639
PEREZ C, 2001, J MED CHEM, V44, P3768
PEROLA E, 2004, PROTEINS, V56, P235, DOI 10.1002/prot.20088
POROTTO M, 2006, J VIROL, V80, P1204, DOI 10.1128/JVI.80.3.1204-1213.2006
QUIOCHO FA, 1984, NATURE, V310, P381
RADIC Z, 1991, MOL PHARMACOL, V39, P98
RAREY M, 1996, J MOL BIOL, V261, P470
RAVELLI RBG, 1998, ACTA CRYSTALLOGR D 6, V54, P1359
RICHIERI GV, 1994, J BIOL CHEM, V269, P23918
SALL DJ, 1997, J MED CHEM, V40, P3489
SCAPIN G, 2004, BIOCHEMISTRY-US, V43, P6091, DOI 10.1021/bi049868i
SCHULZGASCH T, 2003, J MOL MODEL, V9, P47, DOI 10.1007/s00894-002-0112-y
SHIAU AK, 1998, CELL, V95, P927
SIEGENTHALER G, 1992, BIOCHEM J, V287, P383
SOUNESS JE, 2000, IMMUNOPHARMACOLOGY, V47, P127
STAHL M, 1998, J MOL GRAPH MODEL, V16, P121
STAHL M, 2001, J MED CHEM, V44, P1035
STURZEBECHER J, 1984, THROMB RES, V36, P457
TERP GE, 2001, J MED CHEM, V44, P2333
TURK D, 1991, FEBS LETT, V287, P133
VARGAS R, 2000, J AM CHEM SOC, V122, P4750
VERDONK ML, 2003, PROTEINS, V52, P609, DOI 10.1002/prot.10465
VERMERSCH PS, 1991, BIOCHEMISTRY-US, V30, P6861
VYAS NK, 1988, SCIENCE, V242, P1290
WALTERS WP, 1998, DRUG DISCOV TODAY, V3, P160
WANG J, 1999, PROTEINS, V36, P1
WANG RX, 2002, J COMPUT AID MOL DES, V16, P11
WANG RX, 2003, J MED CHEM, V46, P2287, DOI 10.1021/jm0203783
WANG RX, 2004, J CHEM INF COMP SCI, V44, P2114, DOI 10.1021/ci049733j
WARREN GL, 2006, J MED CHEM, V49, P5912, DOI 10.1021/jm050362n
WHITLOW M, 1995, PROTEIN ENG, V8, P749
XING L, 2004, J COMPUT AID MOL DES, V18, P333
XU ZH, 1993, J BIOL CHEM, V268, P7874