Record 2793   View: Standard Glossary  HistCite Guide
Author(s): CYGLER M; GROCHULSKI P; KAZLAUSKAS RJ; SCHRAG JD; BOUTHILLIER F; RUBIN B; SERREQI AN; GUPTA AK
Title: A STRUCTURAL BASIS FOR THE CHIRAL PREFERENCES OF LIPASES
Source: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 116 (8): 3180-3186
Date: 1994 APR 20
Document Type: Journal : Article
DOI:  
Language: English
Comment:  
Address: MCGILL UNIV, DEPT CHEM, MONTREAL H3A 2K6, PQ, CANADA.
STERLING WINTHROP INC, STERLING WINTHROP PHARMACEUT RES DIV, COLLEGEVILLE, PA 19460 USA.
TECH UNIV LODZ, INST PHYS, PL-93005 LODZ, POLAND.
Reprint: CYGLER, M, NATL RES COUNCIL CANADA, BIOTECHNOL RES INST, MONTREAL H4P
2R2, PQ, CANADA.
E-mail:  
Author Keywords:  
KeyWords Plus: PSEUDOMONAS-CEPACIA; PANCREATIC LIPASE; ORGANIC-CHEMISTRY; BACILLUS- SUBTILIS; CANDIDA-RUGOSA; TRIAD FORMS; RESOLUTION; HYDROLYSIS; ALCOHOLS; TRANSESTERIFICATION
Abstract: Many lipases and esterases show striking similarities in their enantioselectivities, and empirical rules have been formulated to predict the preferred stereochemistry for various types of reactions. A rule for formation of secondary alcohols predicts which enantiomer reacts faster based on the relative sizes of the substituents at the stereocenter. We report the first direct determination of the mechanism by which a lipase distinguishes between enantiomers and provide a general structural explanation of the aforementioned empirical rule. We determined X-ray crystal structures of covalent complexes of Candida rugosa lipase with transition-state analogs for the hydrolysis of menthyl esters. One structure contains (1R)-menthyl hexylphosphonate, 1R, derived from the fast-reacting enantiomer of menthol; the other contains (1S)-menthyl hexylphosphonate, 1S, derived from the slow-reacting enantiomer. These high-resolution three-dimensional structures show, firstly, that the empirical rule determined by substrate mapping is a good low-resolution description of the alcohol binding site in Candida rugosa lipase. Secondly, interactions between the menthyl ring of the slow-reacting enantiomer and the histidine of the catalytic triad disrupt the hydrogen bond between N epsilon 2 of the imidazole ring and the menthol oxygen atom, likely accounting for the slower reaction of the (1S)-enantiomer of menthol. Thirdly, the enantiopreference of CRL toward secondary alcohols is set, not by an alcohol binding site separate from the catalytic site but by the same loops that assemble the catalytic machinery. The common orientation of these loops among many lipases and esterases accounts for their common enantiopreference toward secondary alcohols. This identification of the enantioselection mechanism sets the stage for rational enantioselective syntheses with lipases.
Cited References:
ALLEN FH, 1983, ACCOUNTS CHEM RES, V16, P146
BRADY L, 1990, NATURE, V343, P767
BROOKES IK, 1986, ENZYME MICROB TECH, V8, P53
BRUNGER AT, 1992, X PLOR VERSION 3 1 S
BRZOZOWSKI AM, 1991, NATURE, V351, P491
BURGESS K, 1991, J AM CHEM SOC, V113, P6129
CHEN CS, 1982, J AM CHEM SOC, V104, P7294
CONNOLLY ML, 1983, J APPL CRYSTALLOGR, V16, P548
CORRIU RJP, 1980, TETRAHEDRON, V36, P1617
CROUT DHG, 1989, MODERN SYNTHETIC MET, V5, P1
CYGLER M, 1993, PROTEIN SCI, V2, P366
EXL C, 1992, TETRAHEDRON-ASYMMETR, V3, P1391
GEORGENS U, 1991, J CHEM SOC CHEM COMM, P1066
GILBERT EJ, 1993, ENZYME MICROB TECH, V15, P634
GROCHULSKI P, 1993, J BIOL CHEM, V268, P12843
GROCHULSKI P, 1994, IN PRESS BIOCHEMISTR
GROCHULSKI P, 1994, PROTEIN SCI, V3, P82
HAAS MJ, 1991, GENE, V109, P107
JANSSEN AJM, 1991, TETRAHEDRON, V47, P7645
JONES TA, 1978, J APPL CRYSTALLOGR, V11, P268
KAZLAUSKAS RJ, 1991, J ORG CHEM, V56, P2656
KIM MJ, 1992, J CHEM SOC CHEM 1001, P1411
KIM MJ, 1992, J ORG CHEM, V57, P1605
KOSHIRO S, 1985, J BIOTECHNOL, V2, P47
LANGRAND G, 1985, TETRAHEDRON LETT, V26, P1857
LANGRAND G, 1986, TETRAHEDRON LETT, V27, P29
LAUMEN K, 1987, THESIS BUGH WUPPERTA
LOKOTSCH W, 1989, APPL MICROBIOL BIOT, V31, P467
MARTINEZ C, 1992, NATURE, V356, P615
MORI K, 1980, TETRAHEDRON, V36, P91
MURASE H, 1990, 2299584, JA
NAEMURA K, 1993, B CHEM SOC JPN, V66, P573
NELBOECKHOCHSTETTE M, 1977, 2537339, GE
NOBLE MEM, 1993, FEBS LETT, V331, P123
OLLIS DL, 1992, PROTEIN ENG, V5, P197
RABILLER CG, 1990, TETRAHEDRON, V46, P4231
ROBERTS SM, 1989, PHILOS T ROY SOC B, V324, P577
RUBIN B, 1991, LIPASES STRUCTURE ME, P63
SANTANIELLO E, 1992, CHEM REV, V92, P1071
SCHRAG JD, 1991, NATURE, V351, P761
SCHRAG JD, 1992, J BIOL CHEM, V267, P4300
SCHRAG JD, 1993, J MOL BIOL, V230, P575
SERREQI AN, UNPUB
SIH CJ, 1989, TOP STEREOCHEM, V19, P63
STAMATIS H, 1993, BIOTECHNOL LETT, V15, P471
SUSSMAN JL, 1991, SCIENCE, V253, P872
UMEMURA T, 1989, BIOCATALYSIS AGR BIO, P371
VANTILBEURGH H, 1992, NATURE, V359, P159
VANTILBEURGH H, 1993, NATURE, V362, P814
WILLIAMS AC, 1990, ENZYME MICROB TECH, V12, P260
WINKLER FK, 1990, NATURE, V343, P771
XIE ZF, 1990, TETRAHEDRON-ASYMMETR, V1, P395
YAMAGUCHI S, 1991, GENE, V103, P61
YAMAGUCHI Y, 1976, J AGR CHEM SOC JPN, V50, P619
YAMAGUCHI Y, 1976, NIPPON NOGEI KAGAKU, V50, P619
YAMAGUCHI Y, 1977, NIPPON NOGEI KAGAKU, V51, P411
ZHAO K, 1993, TETRAHEDRON, V49, P353
ZIFFER H, 1983, J ORG CHEM, V48, P3017