Record 9974   View: Standard Glossary  HistCite Guide
Author(s): D'Amico S; Marx JC; Gerday C; Feller G
Title: Activity-stability relationships in extremophilic enzymes
Source: JOURNAL OF BIOLOGICAL CHEMISTRY 278 (10): 7891-7896
Date: 2003 MAR 7
Document Type: Journal : Article
DOI:  
Language: English
Comment:  
Address: Univ Liege, Biochem Lab, Inst Chem B6, B-4000 Liege, Belgium.
Reprint: Feller, G, Univ Liege, Biochem Lab, Inst Chem B6, B-4000 Liege,
Belgium.
E-mail:  
Abstract: Psychrophilic, mesophilic, and thermophilic alpha-amylases have been studied as regards their conformational stability, heat inactivation, irreversible unfolding, activation parameters of the reaction, properties of the enzyme in complex with a transition state analog, and structural permeability. These data allowed us to propose an energy landscape for a family of extremophilic enzymes based on the folding funnel model, integrating the main differences in conformational energy, cooperativity of protein unfolding, and temperature dependence of the activity. In particular, the shape of the funnel bottom, which depicts the stability of the native state ensemble, also accounts for the thermodynamic parameters of activation that characterize these extremophilic enzymes, therefore providing a rational basis for stability-activity relationships in protein adaptation to extreme temperatures.
Cited References:
AGHAJARI N, 1998, STRUCTURE, V6, P1503
BERNFELD P, 1955, METHOD ENZYMOL, V1, P149
BLOCHL E, 1997, EXTREMOPHILES, V1, P14
BOEL E, 1990, BIOCHEMISTRY-US, V29, P6244
DAMICO S, 2000, GENE, V253, P95
DAMICO S, 2001, J BIOL CHEM, V276, P25791
DAMICO S, 2002, PHILOS T ROY SOC B, V357, P917
DEMING JW, 2002, CURR OPIN MICROBIOL, V5, P301
DILL KA, 1997, NAT STRUCT BIOL, V4, P10
DINNER AR, 2000, TRENDS BIOCHEM SCI, V25, P331
DOBSON CM, 1999, CURR OPIN STRUC BIOL, V9, P92
FELLER G, 1999, BIOCHEMISTRY-US, V38, P4613
FELLER G, 2002, IN PRESS CELL MOL LI, V59
FIELDS PA, 1998, P NATL ACAD SCI USA, V95, P11476
FIELDS PA, 2001, COMP BIOCHEM PHYS A, V129, P417
FITTER J, 2000, BIOPHYS J, V79, P1629
FITTER J, 2001, BIOCHEMISTRY-US, V40, P10723
GIANESE G, 2002, PROTEINS, V47, P236
GRIMSLEY JK, 1997, BIOCHEMISTRY-US, V36, P14366
HERNANDEZ G, 2000, P NATL ACAD SCI USA, V97, P3166
JAENICKE R, 2000, P NATL ACAD SCI USA, V97, P2962
KOHEN A, 1999, NATURE, V399, P496
KUMAR S, 2000, PROTEIN SCI, V9, P10
KUMAR S, 2001, BIOCHEMISTRY-US, V40, P14152
KUMAR S, 2002, BIOCHEMISTRY-US, V41, P5359
LAKOWICZ J, 1983, PRINCIPLES FLUORESCE, P2557
LONHIENNE T, 2000, BBA-PROTEIN STRUCT M, V1543, P1
LOW PS, 1973, P NATL ACAD SCI USA, V70, P430
MA BY, 2000, J THEOR BIOL, V203, P383
MAKHATADZE GI, 1995, ADV PROTEIN CHEM, V47, P307
MARGESIN R, 2002, ENCY ENV MICROBIOLOG, V2, P871
MATOUSCHEK A, 1994, PROTEIN ENG, V7, P1089
PACE CN, 1986, METHOD ENZYMOL, V131, P266
PRIVALOV P, 1992, PROTEIN FOLDING
PRIVALOV PL, 1979, ADV PROTEIN CHEM, V33, P167
PRIVALOV PL, 1982, J MOL BIOL, V159, P665
PRIVALOV PL, 1990, CRIT REV BIOCHEM MOL, V25, P281
QIAN MX, 1994, BIOCHEMISTRY-US, V33, P6284
RUSSELL NJ, 2000, EXTREMOPHILES, V4, P83
SANCHEZRUIZ JM, 1988, BIOCHEMISTRY-US, V27, P1648
SATTLER B, 2001, GEOPHYS RES LETT, V28, P239
SCHULTZ CP, 2000, NAT STRUCT BIOL, V7, P7
SMALAS AO, 2000, BIOTECHNOL ANN REV, V6, P1
SVINGOR A, 2001, J BIOL CHEM, V276, P28121
TSAI CJ, 1999, P NATL ACAD SCI USA, V96, P9970
VIEILLE C, 2001, MICROBIOL MOL BIOL R, V65, P1
VOGL T, 1997, BIOCHEMISTRY-US, V36, P1657
VUILLARD L, 1995, BIOCHEM J 1, V305, P337
WINTRODE PL, 2000, ADV PROTEIN CHEM, V55, P161
WRBA A, 1990, BIOCHEMISTRY-US, V29, P7584
ZAVODSZKY P, 1998, P NATL ACAD SCI USA, V95, P7406