Record 9974 View: Standard | Glossary HistCite Guide |
Author(s): D'Amico S; Marx JC; Gerday C; Feller G
Title: Activity-stability relationships in extremophilic enzymes
Source: JOURNAL OF BIOLOGICAL CHEMISTRY 278 (10): 7891-7896
Date: 2003 MAR 7
Document Type: Journal : Article
DOI:
Language: English
Comment:
Address: Univ Liege, Biochem Lab, Inst Chem B6, B-4000 Liege, Belgium.
Reprint: Feller, G, Univ Liege, Biochem Lab, Inst Chem B6, B-4000 Liege,
Belgium. E-mail:
Abstract: Psychrophilic, mesophilic, and thermophilic alpha-amylases have been studied as regards their conformational stability, heat inactivation, irreversible unfolding, activation parameters of the reaction, properties of the enzyme in complex with a transition state analog, and structural permeability. These data allowed us to propose an energy landscape for a family of extremophilic enzymes based on the folding funnel model, integrating the main differences in conformational energy, cooperativity of protein unfolding, and temperature dependence of the activity. In particular, the shape of the funnel bottom, which depicts the stability of the native state ensemble, also accounts for the thermodynamic parameters of activation that characterize these extremophilic enzymes, therefore providing a rational basis for stability-activity relationships in protein adaptation to extreme temperatures.
Cited References: AGHAJARI N, 1998, STRUCTURE, V6, P1503 BERNFELD P, 1955, METHOD ENZYMOL, V1, P149 BLOCHL E, 1997, EXTREMOPHILES, V1, P14 BOEL E, 1990, BIOCHEMISTRY-US, V29, P6244 DAMICO S, 2000, GENE, V253, P95 DAMICO S, 2001, J BIOL CHEM, V276, P25791 DAMICO S, 2002, PHILOS T ROY SOC B, V357, P917 DEMING JW, 2002, CURR OPIN MICROBIOL, V5, P301 DILL KA, 1997, NAT STRUCT BIOL, V4, P10 DINNER AR, 2000, TRENDS BIOCHEM SCI, V25, P331 DOBSON CM, 1999, CURR OPIN STRUC BIOL, V9, P92 FELLER G, 1999, BIOCHEMISTRY-US, V38, P4613 FELLER G, 2002, IN PRESS CELL MOL LI, V59 FIELDS PA, 1998, P NATL ACAD SCI USA, V95, P11476 FIELDS PA, 2001, COMP BIOCHEM PHYS A, V129, P417 FITTER J, 2000, BIOPHYS J, V79, P1629 FITTER J, 2001, BIOCHEMISTRY-US, V40, P10723 GIANESE G, 2002, PROTEINS, V47, P236 GRIMSLEY JK, 1997, BIOCHEMISTRY-US, V36, P14366 HERNANDEZ G, 2000, P NATL ACAD SCI USA, V97, P3166 JAENICKE R, 2000, P NATL ACAD SCI USA, V97, P2962 KOHEN A, 1999, NATURE, V399, P496 KUMAR S, 2000, PROTEIN SCI, V9, P10 KUMAR S, 2001, BIOCHEMISTRY-US, V40, P14152 KUMAR S, 2002, BIOCHEMISTRY-US, V41, P5359 LAKOWICZ J, 1983, PRINCIPLES FLUORESCE, P2557 LONHIENNE T, 2000, BBA-PROTEIN STRUCT M, V1543, P1 LOW PS, 1973, P NATL ACAD SCI USA, V70, P430 MA BY, 2000, J THEOR BIOL, V203, P383 MAKHATADZE GI, 1995, ADV PROTEIN CHEM, V47, P307 MARGESIN R, 2002, ENCY ENV MICROBIOLOG, V2, P871 MATOUSCHEK A, 1994, PROTEIN ENG, V7, P1089 PACE CN, 1986, METHOD ENZYMOL, V131, P266 PRIVALOV P, 1992, PROTEIN FOLDING PRIVALOV PL, 1979, ADV PROTEIN CHEM, V33, P167 PRIVALOV PL, 1982, J MOL BIOL, V159, P665 PRIVALOV PL, 1990, CRIT REV BIOCHEM MOL, V25, P281 QIAN MX, 1994, BIOCHEMISTRY-US, V33, P6284 RUSSELL NJ, 2000, EXTREMOPHILES, V4, P83 SANCHEZRUIZ JM, 1988, BIOCHEMISTRY-US, V27, P1648 SATTLER B, 2001, GEOPHYS RES LETT, V28, P239 SCHULTZ CP, 2000, NAT STRUCT BIOL, V7, P7 SMALAS AO, 2000, BIOTECHNOL ANN REV, V6, P1 SVINGOR A, 2001, J BIOL CHEM, V276, P28121 TSAI CJ, 1999, P NATL ACAD SCI USA, V96, P9970 VIEILLE C, 2001, MICROBIOL MOL BIOL R, V65, P1 VOGL T, 1997, BIOCHEMISTRY-US, V36, P1657 VUILLARD L, 1995, BIOCHEM J 1, V305, P337 WINTRODE PL, 2000, ADV PROTEIN CHEM, V55, P161 WRBA A, 1990, BIOCHEMISTRY-US, V29, P7584 ZAVODSZKY P, 1998, P NATL ACAD SCI USA, V95, P7406 |