Record 8262 View: Standard | Glossary HistCite Guide |
Author(s): Ogliaro F; Harris N; Cohen S; Filatov M; de Visser SP; Shaik S
Title: A model "rebound" mechanism of hydroxylation by cytochrome P450: Stepwise and effectively concerted pathways, and their reactivity patterns
Source: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 122 (37): 8977-8989
Date: 2000 SEP 20
Document Type: Journal : Review
DOI:
Language: English
Comment:
Address: Hebrew Univ Jerusalem, Dept Organ Chem, IL-91904 Jerusalem, Israel.
Hebrew Univ Jerusalem, Lise Meitner Minerva Ctr Computat Quantum Chem, IL-91904 Jerusalem, Israel. Reprint: Shaik, S, Hebrew Univ Jerusalem, Dept Organ Chem, IL-91904 Jerusalem,
Israel. E-mail:
Abstract: A two-state rebound mechanism of alkane hydroxylation by a model active species of the enzyme cytochrome P450 is studied using density functional theoretic calculations. Theory corroborates Groves's rebound mechanism (Groves, J. T. J. Chem. Educ. 1985, 62, 928), with a key difference,namely that in the two-state rebound the reactivity and product distribution result from the interplay of two reactive states of the active ferryl-oxene (Por(+.)FeO) species of the enzyme: one state is low-spin (doublet) and the other high-spin (quartet). Transition-state structures, intermediates, and product complexes are identified for the two states. The bond activation in either one of the two states involves a hydrogen abstraction-like transition structure. However, while in the high-spin state there forms a radical that has a significant barrier for rebound, in the low-spin state the rebound is virtually barrierless. Even though one cannot ignore incursion of a small amount of radicals in the low-spin state, it is clear that the radical has a significant lifetime mainly on the high-spin surface. The results are used to gain insight into puzzling experimental data which emerge from studies of ultrafast radical clocks (e.g., Toy, P. H.; Newcomb, M.; Hollenberg, P. F., J. Am. Chem. Sec. 1998, 120, 7719), vis a vis the nature the transition state, deduced from kinetic isotope effect measurements (Manchester, J. I.; Dinnocenzo, J. P.; Higgins, L. A.; Jones, J. P. J. Am. Chem. Sec. 1997, 119, 5069) and stereochemical scrambling patterns (Groves, J. T.; McClusky, G. A.; White, R. E.; Goon, M. J. Biochem. Biophys. Res. Commun. 1978, 81, 154). Understanding the electronic structure of the various species leads to a predictive structure-reactivity picture, based on the two-state reactivity scenario (Shaik, S.; Filatov, M.; Schroder, D.; Schwarz, H. Chem. fur. J. 1998, 4, 193). The model makes it possible to predict the dependence of the relative rates of the two states, and of the corresponding steps as a function of the nature of the alkane, the resulting alkyl radical, and the binding capability of the thiolate proximal ligand of the active species.
Cited References: 1998, JAGUAR 3 5 AISSAOUI H, 1998, ANGEW CHEM INT EDIT, V37, P2998 ANTONY J, 1997, J PHYS CHEM A, V101, P2692 ATKINSON JK, 1993, BIOCHEMISTRY-US, V32, P9209 ATKINSON JK, 1994, BIOCHEMISTRY-US, V33, P10630 AUDERGON C, 1999, J AM CHEM SOC, V121, P41 AUGUSTO O, 1982, J BIOL CHEM, V257, P11288 BAKER J, 1988, J COMPUT CHEM, V9, P465 BANGCHAROENPAURPONG O, 1987, J CHEM PHYS, V87, P4273 BASCH H, 1999, J AM CHEM SOC, V121, P7249 BECKE AD, 1992, J CHEM PHYS, V96, P2155 BECKE AD, 1992, J CHEM PHYS, V97, P9173 BECKE AD, 1993, J CHEM PHYS, V98, P5648 BERNADOU J, 1994, J AM CHEM SOC, V116, P9375 BLAKE RC, 1989, J BIOL CHEM, V264, P3694 BORDEN WT, 1975, MODERN MOL ORBITAL T, P265 BOSO B, 1983, J CHEM PHYS, V79, P1122 BOWRY VW, 1989, J AM CHEM SOC, V111, P1927 BOWRY VW, 1991, J AM CHEM SOC, V113, P5699 CHAMPION PM, 1989, J AM CHEM SOC, V111, P3433 CZERNUSZEWICZ RS, 1988, J AM CHEM SOC, V110, P4158 DAWSON JH, 1987, CHEM REV, V87, P1255 DAWSON JH, 1988, SCIENCE, V240, P433 DEMONTELLANO PRO, 1987, ACCOUNTS CHEM RES, V20, P289 DEMONTELLANO PRO, 1987, J AM CHEM SOC, V109, P3415 DEMONTELLANO PRO, 1989, TRENDS PHARMACOL SCI, V10, P354 DEMONTELLANO PRO, 1995, CYTOCHROME P450 STRU DOLPHIN D, 1988, BASIC LIFE SCI, V49, P491 DONAHUE NM, 1998, J PHYS CHEM A, V102, P3923 EGAWA T, 1994, BIOCHEM BIOPH RES CO, V201, P1464 FELTON RH, 1971, J AM CHEM SOC, V93, P6332 FERRARIO L, 1999, MON NOT R ASTRON SOC, V310, P189 FILATOV M, 1998, J PHYS CHEM A, V102, P3835 FILATOV M, 1999, ANGEW CHEM INT EDIT, V38, P3510 FILATOV M, 1999, J CHEM SOC PERK MAR, P399 FOX GL, 1992, J PHYS CHEM-US, V96, P298 FRIESNER RA, 1999, J PHYS CHEM A, V103, P1913 FRISCH MJ, 1998, GAUSSIAN98 GANS P, 1986, J AM CHEM SOC, V108, P1223 GELB MH, 1982, BIOCHEMISTRY-US, V21, P370 GHOSH A, 1994, J PHYS CHEM-US, V98, P5576 GOTO Y, 1998, J AM CHEM SOC, V120, P10762 GREEN MT, 1999, J AM CHEM SOC, V121, P7939 GRODZICKI M, 1996, J INORG BIOL CHEM, V1, P192 GROSS Z, 1996, J MOL CATAL A-CHEM, V113, P231 GROSS Z, 1997, J BIOL INORG CHEM, V2, P492 GROVES JT, 1976, J AM CHEM SOC, V98, P5290 GROVES JT, 1976, J AM CHEM SOC, V98, P859 GROVES JT, 1978, BIOCHEM BIOPH RES CO, V81, P154 GROVES JT, 1983, J AM CHEM SOC, V105, P6243 GROVES JT, 1984, J AM CHEM SOC, V106, P2177 GROVES JT, 1985, J CHEM EDUC, V62, P928 GROVES JT, 1994, INORG CHEM, V33, P5065 GROVES JT, 1995, CYTOCHROME P450 STRU, P3 HANSON LK, 1981, J AM CHEM SOC, V103, P663 HARRIS D, 1993, J AM CHEM SOC, V115, P8775 HARRIS N, 2000, ANGEW CHEM INT EDIT, V39, P2003 HAY PJ, 1985, J CHEM PHYS, V82, P299 HINO F, 1999, J CHEM SOC CHEM COMM, P629 HROVAT DA, 1994, J AM CHEM SOC, V116, P6459 HROVAT DA, 1997, J AM CHEM SOC, V119, P5253 JONES DH, 1993, INORG CHEM, V32, P2092 KAMARAJ K, 1997, J AM CHEM SOC, V119, P8099 KURAMOCHI H, 1997, J AM CHEM SOC, V119, P11442 LEE H, 1999, BIOCHEMISTRY-US, V38, P10808 LEE KA, 1997, J AM CHEM SOC, V119, P1916 LI HY, 1995, J AM CHEM SOC, V117, P6297 LIPSCOMB JD, 1980, BIOCHEMISTRY-US, V19, P3590 LIU HI, 1995, J BIOL CHEM, V270, P10544 LOEW GH, 1977, J AM CHEM SOC, V99, P3534 LOEW GH, 2000, CHEM REV, V100, P407 MANCHESTER JI, 1997, J AM CHEM SOC, V119, P5069 MATSEN FA, 1978, ACCOUNTS CHEM RES, V11, P387 MEUNIER B, 1992, CHEM REV, V92, P1411 MUELLER EJ, 1995, CYTOCHROME P450 STRU, P83 NATANSON GA, 1991, J CHEM PHYS 1, V94, P7875 NEWCOMB M, 1995, J AM CHEM SOC, V117, P12085 NEWCOMB M, 1995, J AM CHEM SOC, V117, P3312 NEWCOMB M, 1995, J AM CHEM SOC, V117, P3312 NEWCOMB M, 2000, BIOCHEMISTRY-US, V122, P2677 PENNERHAHN JE, 1983, J BIOL CHEM, V258, P2761 PRATT JM, 1995, J CHEM SOC CHEM COMM, P2297 PROSS A, 1991, J PHYS ORG CHEM, V4, P135 ROACH MP, 1999, J AM CHEM SOC, V121, P12088 SCHLEGEL HB, 1994, J CHEM SOC FARADAY T, V90, P1569 SCHLICHTING I, 1997, FASEB J S, V11, PA769 SCHLICHTING I, 2000, SCIENCE, V287, P1615 SCHRODER D, 1995, ANGEW CHEM INT EDIT, V34, P1973 SCHRODER D, 2000, ACCOUNTS CHEM RES, V33, P139 SHAIK S, 1997, J AM CHEM SOC, V119, P9237 SHAIK S, 1998, CHEM-EUR J, V4, P193 SHAIK S, 1999, ANGEW CHEM INT EDIT, V38, P586 SIEGBAHN PEM, 1997, J AM CHEM SOC, V119, P3103 SIGMAN JA, 1999, BIOCHEMISTRY-US, V38, P11122 SONO M, 1996, CHEM REV, V96, P2841 STAUBLI B, 1987, HELV CHIM ACTA, V70, P1173 STEVENS PJ, 1994, J PHYS CHEM-US, V98, P11623 TATSUMI K, 1981, INORG CHEM, V20, P3771 TOY PH, 1998, J AM CHEM SOC, V120, P7719 TOY PH, 1998, J AM CHEM SOC, V120, P9718 TRAYLOR TG, 1992, J AM CHEM SOC, V114, P1308 TRAYLOR TG, 1995, ACTIVE OXYGEN BIOCH, P84 TSUCHIYA S, 1991, J CHEM SOC CHEM COMM, P716 UNNO M, 1997, J AM CHEM SOC, V119, P6614 VAZ ADN, 1996, P NATL ACAD SCI USA, V93, P4644 VAZ ADN, 1998, P NATL ACAD SCI USA, V95, P3555 WAGENKNECHT HA, 1997, ANGEW CHEM INT EDIT, V36, P390 WOGGON WD, 1996, TOP CURR CHEM, V184, P40 WOLBERG A, 1970, J AM CHEM SOC, V92, P2982 WONG MW, 1993, ISRAEL J CHEM, V33, P415 YAMAMOTO S, 1988, CHEM PHYS LETT, V145, P111 YOSHIZAWA K, 1998, ORGANOMETALLICS, V17, P2825 ZAKHARIEVA O, 1998, BIOPHYS CHEM, V73, P189 |