Record 12293 View: Standard | Glossary HistCite Guide |
Author(s): Kratzer R; Wilson DK; Nidetzky B
Title: Catalytic mechanism and substrate selectivity of aldo-keto reductases: Insights from structure-function studies of Candida tenuis xylose reductase
Source: IUBMB LIFE 58 (9): 499-507
Date: 2006 SEP
Document Type: Journal : Review
DOI:
Language: English
Comment:
Address: Graz Univ Technol, Inst Biotechnol & Biochem Engn, A-8010 Graz, Austria.
Graz Univ Technol, Res Ctr Appl Biocatalysis, A-8010 Graz, Austria. Univ Calif Davis, Sect Mol & Cellular Biol, Davis, CA 95616 USA. Reprint: Nidetzky, B, Graz Univ Technol, Inst Biotechnol & Biochem Engn,
Petersgasse 12, A-8010 Graz, Austria. E-mail: bernd.nidetzky@tugraz.at
Abstract: Aldo-keto reductases (AKRs) constitute a large protein superfamily of mainly NAD(P)-dependent oxidoreductases involved in carbonyl metabolism. Catalysis is promoted by a conserved tetrad of active site residues (Tyr, Lys, Asp and His). Recent results of structure-function relationship studies for xylose reductase (AKR2B5) require an update of the proposed catalytic mechanism. Electrostatic stabilization by the epsilon-NH3+ group of Lys is a key source of catalytic power of xylose reductase. A molecular-level analysis of the substrate binding pocket of xylose reductase provides a case of how a very broadly specific AKR achieves the requisite selectivity for its physiological substrate and could serve as the basis for the design of novel reductases with improved specificities for biocatalytic applications.
Cited References: BARSKI OA, 1995, BIOCHEMISTRY-US, V34, P11264 BARSKI OA, 1996, BIOCHEMISTRY-US, V35, P14276 BOHREN KM, 1989, J BIOL CHEM, V264, P9547 BOHREN KM, 1994, BIOCHEMISTRY-US, V33, P2021 BRUINENBERG PM, 1983, EUR J APPL MICROBIOL, V18, P287 CARPER D, 1987, FEBS LETT, V220, P209 ELKABBANI O, 2004, CELL MOL LIFE SCI, V61, P750 ELLIS EM, 2002, FEMS MICROBIOL LETT, V216, P123 FARBER GK, 1990, TRENDS BIOCHEM SCI, V15, P228 GRIMSHAW CE, 1995, BIOCHEMISTRY-US, V34, P14374 GULBIS JM, 1999, CELL, V97, P943 HAHNHAGERDAL B, 2001, ADV BIOCHEM ENG BIOT, V73, P53 HEREDIA VV, 2004, BIOCHEMISTRY-US, V43, P12028 HEREDIA VV, 2004, BIOCHEMISTRY-US, V43, P5832 HYNDMAN D, 2003, CHEM-BIOL INTERACT, V143, P621 JEZ JM, 1997, BIOCHEM J 3, V326, P625 JEZ JM, 1998, BIOCHEMISTRY-US, V37, P9695 KATAOKA M, 2003, APPL MICROBIOL BIOT, V62, P437 KAVANAGH KL, 2002, BIOCHEMISTRY-US, V41, P8785 KAVANAGH KL, 2003, BIOCHEM J 2, V373, P319 KILUNGA KB, 2005, J BIOL CHEM, V280, P26371 KIM ST, 1998, BBA-PROTEIN STRUCT M, V1429, P29 KLIMACEK M, 2001, FEBS LETT, V500, P149 KONDO KH, 1994, EUR J BIOCHEM, V219, P357 KRATZER R, 2004, BIOCHEMISTRY-US, V43, P4944 KRATZER R, 2005, BIOCHEM J 2, V389, P507 KRATZER R, 2006, BIOCHEM J 1, V393, P51 KRATZER R, 2006, ENZYMOL MOL BIOL CAR, V12, P404 LEBRUN LA, 2004, BIOCHEMISTRY-US, V43, P3014 MA HC, 1999, P NATL ACAD SCI USA, V96, P11161 MAYR P, 2002, BIOCHEM J 3, V366, P889 NEUHAUSER W, 1997, BIOCHEM J 3, V326, P683 NEUHAUSER W, 1998, BIOCHEMISTRY-US, V37, P1116 NIDETZKY B, 2001, BIOCHEMISTRY-US, V40, P10371 PENNING TM, 1997, STEROIDS, V62, P101 PENNING TM, 1999, J STEROID BIOCHEM, V69, P211 PETSCHACHER B, 2005, BIOCHEM J 1, V385, P75 PETTERSSON G, 1987, CRC CRIT R BIOCHEM, V21, P349 SCHLEGEL BP, 1998, BIOCHEMISTRY-US, V37, P11003 SCHLEGEL BP, 1998, BIOCHEMISTRY-US, V37, P3538 VARNAI P, 2000, J AM CHEM SOC, V122, P3849 WENG J, 2006, J BIOL CHEM, V281, P15194 WILSON DK, 1992, SCIENCE, V257, P81 YOKOCHI N, 2004, J BIOL CHEM, V279, P37377 |