Record 12293   View: Standard Glossary  HistCite Guide
Author(s): Kratzer R; Wilson DK; Nidetzky B
Title: Catalytic mechanism and substrate selectivity of aldo-keto reductases: Insights from structure-function studies of Candida tenuis xylose reductase
Source: IUBMB LIFE 58 (9): 499-507
Date: 2006 SEP
Document Type: Journal : Review
DOI:  
Language: English
Comment:  
Address: Graz Univ Technol, Inst Biotechnol & Biochem Engn, A-8010 Graz, Austria.
Graz Univ Technol, Res Ctr Appl Biocatalysis, A-8010 Graz, Austria.
Univ Calif Davis, Sect Mol & Cellular Biol, Davis, CA 95616 USA.
Reprint: Nidetzky, B, Graz Univ Technol, Inst Biotechnol & Biochem Engn,
Petersgasse 12, A-8010 Graz, Austria.
E-mail: bernd.nidetzky@tugraz.at
Abstract: Aldo-keto reductases (AKRs) constitute a large protein superfamily of mainly NAD(P)-dependent oxidoreductases involved in carbonyl metabolism. Catalysis is promoted by a conserved tetrad of active site residues (Tyr, Lys, Asp and His). Recent results of structure-function relationship studies for xylose reductase (AKR2B5) require an update of the proposed catalytic mechanism. Electrostatic stabilization by the epsilon-NH3+ group of Lys is a key source of catalytic power of xylose reductase. A molecular-level analysis of the substrate binding pocket of xylose reductase provides a case of how a very broadly specific AKR achieves the requisite selectivity for its physiological substrate and could serve as the basis for the design of novel reductases with improved specificities for biocatalytic applications.
Cited References:
BARSKI OA, 1995, BIOCHEMISTRY-US, V34, P11264
BARSKI OA, 1996, BIOCHEMISTRY-US, V35, P14276
BOHREN KM, 1989, J BIOL CHEM, V264, P9547
BOHREN KM, 1994, BIOCHEMISTRY-US, V33, P2021
BRUINENBERG PM, 1983, EUR J APPL MICROBIOL, V18, P287
CARPER D, 1987, FEBS LETT, V220, P209
ELKABBANI O, 2004, CELL MOL LIFE SCI, V61, P750
ELLIS EM, 2002, FEMS MICROBIOL LETT, V216, P123
FARBER GK, 1990, TRENDS BIOCHEM SCI, V15, P228
GRIMSHAW CE, 1995, BIOCHEMISTRY-US, V34, P14374
GULBIS JM, 1999, CELL, V97, P943
HAHNHAGERDAL B, 2001, ADV BIOCHEM ENG BIOT, V73, P53
HEREDIA VV, 2004, BIOCHEMISTRY-US, V43, P12028
HEREDIA VV, 2004, BIOCHEMISTRY-US, V43, P5832
HYNDMAN D, 2003, CHEM-BIOL INTERACT, V143, P621
JEZ JM, 1997, BIOCHEM J 3, V326, P625
JEZ JM, 1998, BIOCHEMISTRY-US, V37, P9695
KATAOKA M, 2003, APPL MICROBIOL BIOT, V62, P437
KAVANAGH KL, 2002, BIOCHEMISTRY-US, V41, P8785
KAVANAGH KL, 2003, BIOCHEM J 2, V373, P319
KILUNGA KB, 2005, J BIOL CHEM, V280, P26371
KIM ST, 1998, BBA-PROTEIN STRUCT M, V1429, P29
KLIMACEK M, 2001, FEBS LETT, V500, P149
KONDO KH, 1994, EUR J BIOCHEM, V219, P357
KRATZER R, 2004, BIOCHEMISTRY-US, V43, P4944
KRATZER R, 2005, BIOCHEM J 2, V389, P507
KRATZER R, 2006, BIOCHEM J 1, V393, P51
KRATZER R, 2006, ENZYMOL MOL BIOL CAR, V12, P404
LEBRUN LA, 2004, BIOCHEMISTRY-US, V43, P3014
MA HC, 1999, P NATL ACAD SCI USA, V96, P11161
MAYR P, 2002, BIOCHEM J 3, V366, P889
NEUHAUSER W, 1997, BIOCHEM J 3, V326, P683
NEUHAUSER W, 1998, BIOCHEMISTRY-US, V37, P1116
NIDETZKY B, 2001, BIOCHEMISTRY-US, V40, P10371
PENNING TM, 1997, STEROIDS, V62, P101
PENNING TM, 1999, J STEROID BIOCHEM, V69, P211
PETSCHACHER B, 2005, BIOCHEM J 1, V385, P75
PETTERSSON G, 1987, CRC CRIT R BIOCHEM, V21, P349
SCHLEGEL BP, 1998, BIOCHEMISTRY-US, V37, P11003
SCHLEGEL BP, 1998, BIOCHEMISTRY-US, V37, P3538
VARNAI P, 2000, J AM CHEM SOC, V122, P3849
WENG J, 2006, J BIOL CHEM, V281, P15194
WILSON DK, 1992, SCIENCE, V257, P81
YOKOCHI N, 2004, J BIOL CHEM, V279, P37377