Record 11165   View: Standard Glossary  HistCite Guide
Author(s): Timosheva NV; Chandrasekaran A; Holmes RR
Title: Atrane and phosphorane formation with aminotriphenols [1]
Source: ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE 631 (13-14): 2683-2690
Date: 2005 
Document Type: Journal : Article
DOI:  
Language: English
Comment:  
Address: Univ Massachusetts, Dept Chem, Amherst, MA 01003 USA.
Reprint: Holmes, RR, Univ Massachusetts, Dept Chem, Amherst, MA 01003 USA.
E-mail: rrh@chem.umass.edu
Abstract: Reaction of the aminotriphenol, tris (2-hydroxy-3-methyl-5-tert-butylbenzyl)amine, with triphenylphosphite resulted in the formation of the first structurally characterized pentaoxyphosphorane-atrane, N[CH2(Me(t-BU)C6H2)O](3)P(OPh)(2) (1) while reaction of the aminotriphenol, tris (2-hydroxy-3,5-dimethylbenzyl)amine (E) with 2,2'ethylidenebis(4,6-di-tei-t-butylpheiiyl)fluorophosphite led to the isolation of the phosphorane, N[CH2(Me2C6H2)O](2)-P[OC6H2(t-BU)(2)](2)CHCH3 (2), as a result of aminotriphenol to aminodiphenol conversion. X-ray analysis revealed the octahedral geometry of 1 showing strong P-N dative bond coordination (2.114(6) angstrom) and the trigonal bipyramidal arrangement for 2 exhibiting a normal P-N covalent bond (1.652(2) angstrom). H-1, C-13 and P-31 NMR measurements assisted in the structural interpretations and in comparisons with related compounds. The results confirm the premise that donor action at the transition state of active sites of phosphoryl transfer enzymes should enjoy enhanced reaction with nearby donor groups that are positioned to enter into coordination with the reactive phosphoryl component, especially for such enzymatic reactions that exhibit catalytic promiscuity.
Cited References:
BONDI A, 1964, J PHYS CHEM-US, V68, P441
CHANDRASEKARAN A, 1997, INORG CHEM, V36, P2578
CHANDRASEKARAN A, 2000, INORG CHEM, V39, P5683
CHANDRASEKARAN A, 2000, J AM CHEM SOC, V122, P1066
CHANDRASEKARAN A, 2001, INORG CHEM, V40, P6229
CHANDRASEKARAN A, 2002, INORG CHEM, V41, P1645
CHANDRASEKARAN A, 2003, INORG CHEM, V42, P3285
COPLEY SD, 2003, CURR OPIN CHEM BIOL, V7, P265
FARRUGIA LJ, 1997, J APPL CRYSTALLOGR, V30, P565
HOLMES RR, 1980, ACS MONOGRAPH, V175
HOLMES RR, 1980, ACS MONOGRAPH, V176
HOLMES RR, 1998, ACCOUNTS CHEM RES, V31, P535
HOLMES RR, 2004, ACCOUNTS CHEM RES, V37, P746
JAMES LC, 2001, PROTEIN SCI, V10, P2600
JAMES LC, 2003, SCIENCE, V299, P1362
JAMES LC, 2003, TRENDS BIOCHEM SCI, V28, P361
JEFFERY CJ, 1999, TRENDS BIOCHEM SCI, V24, P8
OBRIEN PJ, 1999, CHEM BIOL, V6, PR91
PETSKO GA, 2003, CEN, P33
RIDDICK JA, 1970, PHYS METHODS ORGANIC, V2
SAID MA, 1996, J AM CHEM SOC, V118, P9841
SAID MA, 1997, INORG CHEM, V36, P2044
SCHMIDT DMZ, 2003, BIOCHEMISTRY-US, V42, P8387
SEFFERNICK JL, 2001, BIOCHEMISTRY-US, V40, P12747
SHELDRICK GM, 1990, ACTA CRYSTALLOGR A, V46, P467
SHELDRICK GM, 1997, SHELXL97 PROGRAM CRY
SUTTON L, 1958, SPECIAL PUBLICATIONS, V11
TIMOSHEVA NV, 1996, INORG CHEM, V35, P6552
TIMOSHEVA NV, 2000, ORGANOMETALLICS, V19, P5614
TIMOSHEVA NV, 2001, ORGANOMETALLICS, V20, P2331
TIMOSHEVA NV, 2002, J AM CHEM SOC, V124, P7035
TIMOSHEVA NV, 2004, INORG CHEM, V43, P7403
VOGEL AI, 1978, TXB PRACTICAL ORGAN