Record 11165 View: Standard | Glossary HistCite Guide |
Author(s): Timosheva NV; Chandrasekaran A; Holmes RR
Title: Atrane and phosphorane formation with aminotriphenols [1]
Source: ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE 631 (13-14): 2683-2690
Date: 2005
Document Type: Journal : Article
DOI:
Language: English
Comment:
Address: Univ Massachusetts, Dept Chem, Amherst, MA 01003 USA.
Reprint: Holmes, RR, Univ Massachusetts, Dept Chem, Amherst, MA 01003 USA.
E-mail: rrh@chem.umass.edu
Abstract: Reaction of the aminotriphenol, tris (2-hydroxy-3-methyl-5-tert-butylbenzyl)amine, with triphenylphosphite resulted in the formation of the first structurally characterized pentaoxyphosphorane-atrane, N[CH2(Me(t-BU)C6H2)O](3)P(OPh)(2) (1) while reaction of the aminotriphenol, tris (2-hydroxy-3,5-dimethylbenzyl)amine (E) with 2,2'ethylidenebis(4,6-di-tei-t-butylpheiiyl)fluorophosphite led to the isolation of the phosphorane, N[CH2(Me2C6H2)O](2)-P[OC6H2(t-BU)(2)](2)CHCH3 (2), as a result of aminotriphenol to aminodiphenol conversion. X-ray analysis revealed the octahedral geometry of 1 showing strong P-N dative bond coordination (2.114(6) angstrom) and the trigonal bipyramidal arrangement for 2 exhibiting a normal P-N covalent bond (1.652(2) angstrom). H-1, C-13 and P-31 NMR measurements assisted in the structural interpretations and in comparisons with related compounds. The results confirm the premise that donor action at the transition state of active sites of phosphoryl transfer enzymes should enjoy enhanced reaction with nearby donor groups that are positioned to enter into coordination with the reactive phosphoryl component, especially for such enzymatic reactions that exhibit catalytic promiscuity.
Cited References: BONDI A, 1964, J PHYS CHEM-US, V68, P441 CHANDRASEKARAN A, 1997, INORG CHEM, V36, P2578 CHANDRASEKARAN A, 2000, INORG CHEM, V39, P5683 CHANDRASEKARAN A, 2000, J AM CHEM SOC, V122, P1066 CHANDRASEKARAN A, 2001, INORG CHEM, V40, P6229 CHANDRASEKARAN A, 2002, INORG CHEM, V41, P1645 CHANDRASEKARAN A, 2003, INORG CHEM, V42, P3285 COPLEY SD, 2003, CURR OPIN CHEM BIOL, V7, P265 FARRUGIA LJ, 1997, J APPL CRYSTALLOGR, V30, P565 HOLMES RR, 1980, ACS MONOGRAPH, V175 HOLMES RR, 1980, ACS MONOGRAPH, V176 HOLMES RR, 1998, ACCOUNTS CHEM RES, V31, P535 HOLMES RR, 2004, ACCOUNTS CHEM RES, V37, P746 JAMES LC, 2001, PROTEIN SCI, V10, P2600 JAMES LC, 2003, SCIENCE, V299, P1362 JAMES LC, 2003, TRENDS BIOCHEM SCI, V28, P361 JEFFERY CJ, 1999, TRENDS BIOCHEM SCI, V24, P8 OBRIEN PJ, 1999, CHEM BIOL, V6, PR91 PETSKO GA, 2003, CEN, P33 RIDDICK JA, 1970, PHYS METHODS ORGANIC, V2 SAID MA, 1996, J AM CHEM SOC, V118, P9841 SAID MA, 1997, INORG CHEM, V36, P2044 SCHMIDT DMZ, 2003, BIOCHEMISTRY-US, V42, P8387 SEFFERNICK JL, 2001, BIOCHEMISTRY-US, V40, P12747 SHELDRICK GM, 1990, ACTA CRYSTALLOGR A, V46, P467 SHELDRICK GM, 1997, SHELXL97 PROGRAM CRY SUTTON L, 1958, SPECIAL PUBLICATIONS, V11 TIMOSHEVA NV, 1996, INORG CHEM, V35, P6552 TIMOSHEVA NV, 2000, ORGANOMETALLICS, V19, P5614 TIMOSHEVA NV, 2001, ORGANOMETALLICS, V20, P2331 TIMOSHEVA NV, 2002, J AM CHEM SOC, V124, P7035 TIMOSHEVA NV, 2004, INORG CHEM, V43, P7403 VOGEL AI, 1978, TXB PRACTICAL ORGAN |