Record 6501 View: Standard | Glossary HistCite Guide |
Author(s): Summons RE; Bradley AS; Jahnke LL; Waldbauer JR
Title: Steroids, triterpenoids and molecular oxygen
Source: PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES 361 (1470): 951-968
Date: 2006 JUN 29
Document Type: Journal : Article
DOI:
Language: English
Comment:
Address: MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA.
NASA, Ames Res Ctr, Planetary Biol Branch, Moffett Field, CA 94035 USA. Woods Hole Oceanog Inst, Joint Program Chem Oceanog, Cambridge, MA 02139 USA. Reprint: Summons, RE, MIT, Dept Earth Atmospher & Planetary Sci, 77
Massachusetts Ave E34-246, Cambridge, MA 02139 USA. E-mail: rsummons@mit.edu
Author Keywords:
KeyWords Plus:
Abstract: There is a close connection between modern-day biosynthesis of particular triterpenoid biomarkers and presence of molecular oxygen in the environment. Thus, the detection of steroid and triterpenoid hydrocarbons far back in Earth history has been used to infer the antiquity of oxygenic photosynthesis. This prompts the question: were these compounds produced similarly in the past? In this paper, we address this question with a review of the current state of knowledge surrounding the oxygen requirement for steroid biosynthesis and phylogenetic patterns in the distribution of steroid and triterpenoid biosynthetic pathways. The hopanoid and steroid biosynthetic pathways are very highly conserved within the bacterial and eukaryotic domains, respectively. Bacteriohopanepolyols are produced by a wide range of bacteria, and are methylated in significant abundance at the C2 position by oxygen-producing cyanobacteria. On the other hand, sterol biosynthesis is sparsely distributed in distantly related bacterial taxa and the pathways do not produce the wide range of products that characterize eukaryotes. In particular, evidence for sterol biosynthesis by cyanobacteria appears flawed. Our experiments show that cyanobacterial cultures are easily contaminated by sterol-producing rust fungi, which can be eliminated by treatment with cycloheximide affording sterol-free samples. Sterols are ubiquitous features of eukaryotic membranes, and it appears likely that the initial steps in sterol biosynthesis were present in their modern form in the last common ancestor of eukaryotes. Eleven molecules of O-2 are required by four enzymes to produce one molecule of cholesterol. Thermodynamic arguments, optimization of function and parsimony all indicate that an ancestral anaerobic pathway is highly unlikely. The known geological record of molecular fossils, especially steranes and triterpanes, is notable for the limited number of structural motifs that have been observed. With a few exceptions, the carbon skeletons are the same as those found in the lipids of extant organisms and no demonstrably extinct structures have been reported. Furthermore, their patterns of occurrence over billion year time-scales correlate strongly with environments of deposition. Accordingly, biomarkers are excellent indicators of environmental conditions even though the taxonomic affinities of all biomarkers cannot be precisely specified. Biomarkers are ultimately tied to biochemicals with very specific functional properties, and interpretations of the biomarker record will benefit from increased understanding of the biological roles of geologically durable molecules.
Cited References: ABE I, 1993, CHEM REV, V93, P2189 ADL SM, 2005, J EUKARYOT MICROBIOL, V52, P399 ALTSCHUL SF, 1997, NUCLEIC ACIDS RES, V25, P3389 ANDING C, 1971, EUR J BIOCHEM, V24, P259 AOYAMA Y, 1994, BIOCHEM BIOPH RES CO, V201, P1320 ARISUE N, 2005, MOL BIOL EVOL, V22, P409 BACIA K, 2005, P NATL ACAD SCI USA, V102, P3272 BEKKER A, 2004, NATURE, V427, P117 BELLAMINE A, 2004, J LIPID RES, V45, P2000 BENVENISTE P, 2004, ANNU REV PLANT BIOL, V55, P429 BIRD CW, 1971, NATURE, V230, P473 BLANKENSHIP RE, 1998, TRENDS BIOCHEM SCI, V23, P94 BLANKSBY SJ, 2003, ACCOUNTS CHEM RES, V36, P255 BLOCH K, 1987, ANNU REV BIOCHEM, V56, P1 BLOCH KE, 1983, CRC CRIT R BIOCHEM, V14, P47 BODE HB, 2003, MOL MICROBIOL, V47, P471 BORDA MJ, 2003, GEOCHIM COSMOCHIM AC, V67, P935 BROCKS JJ, 1999, SCIENCE, V285, P1033 BROCKS JJ, 2003, GEOCHIM COSMOCHIM AC, V67, P4289 BROWN JR, 1999, J MOL EVOL, V49, P485 BRUICE TC, 1983, J AM CHEM SOC, V105, P2452 BUICK R, 2004, AM GEOPHYS UN FALL M CARMACK CL, 1976, PHYSL PLANT PATHOL, V8, P43 CASTORENO AB, 2005, P NATL ACAD SCI USA, V102, P13129 CLOUD P, 1972, AM J SCI, V272, P537 DAHL CE, 1980, BIOCHEMISTRY-US, V19, P1462 DARNET S, 2003, BBA-MOL CELL BIOL L, V1633, P106 DARNET S, 2004, BIOCHEM J 3, V378, P889 DESMARAIS DJ, 1992, NATURE, V359, P605 DESMARAIS DJ, 2000, SCIENCE, V289, P1703 DESOUZA NJ, 1968, SCIENCE, V162, P363 EIGENBRODE JL, 2001, 11 VM GOLDSCH C HOT, P3461 EIGENBRODE JL, 2004, AM GEOPH UN FALL M 2 EIGENBRODE JL, 2004, THESIS PENNSYLVANIA FARQUHAR J, 2000, NATURE, V404, P50 FARQUHAR J, 2000, SCIENCE, V289, P756 FISCHER WW, 2005, GEOBIOLOGY, V3, P33 GACHOTTE D, 1998, P NATL ACAD SCI USA, V95, P13794 GACHOTTE D, 1999, P NATL ACAD SCI USA, V96, P12655 GINER JL, 1991, BIOCH SYST ECOL, V19, P142 GROVES JT, 1995, CYTOCHROME P450 STRU, P1 HAI T, 1996, PHYTOCHEMISTRY, V41, P1083 HAINES TH, 2001, PROG LIPID RES, V40, P299 HALVERSON GP, 2005, GEOL SOC AM BULL, V117, P1181 HAYES JM, 2006, PHILOS T R SOC B, V361, P931 HOFFMAN PF, 2002, TERRA NOVA, V14, P129 HOLLAND HD, 1984, CHEM EVOLUTION ATMOS HOLLAND HD, 1990, AM J SCI A, V290, P1 HOLLAND HD, 2002, GEOCHIM COSMOCHIM AC, V66, P3811 HOLTHUIS JCM, 2005, NAT REV MOL CELL BIO, V6, P209 HURTGEN MT, 2005, GEOLOGY, V33, P41 JACKSON CJ, 2002, J BIOL CHEM, V277, P46959 JACKSON LL, 1968, PHYTOCHEMISTRY, V7, P651 JAHNKE L, 1983, J BACTERIOL, V155, P488 JAHNKE LL, 1992, FEMS MICROBIOL LETT, V93, P209 JAHNKE LL, 2004, GEOBIOLOGY, V2, P31 JOUBERT BM, 2001, MOL BIOCHEM PARASIT, V117, P115 KANNENBERG E, 1983, BIOCHIM BIOPHYS ACTA, V733, P111 KARHU JA, 1996, GEOLOGY, V24, P867 KASTING JF, 1985, J GEOPHYS RES-ATMOS, V90, P10497 KIRSCHVINK JL, 2000, P NATL ACAD SCI USA, V97, P1400 KOHL W, 1983, J GEN MICROBIOL, V129, P1629 KOHLHASE M, 1988, PHYTOCHEMISTRY, V27, P1735 KOPP RE, 2005, P NATL ACAD SCI USA, V102, P11131 LADEN BP, 2000, ARCH BIOCHEM BIOPHYS, V374, P381 LAMB DC, 2003, BIOCHEM BIOPH RES CO, V307, P610 LAMOUR V, 1994, P NATL ACAD SCI USA, V91, P8670 LEE HK, 2000, ARCH BIOCHEM BIOPHYS, V381, P43 LEE HK, 2004, BIOCHEM BIOPH RES CO, V315, P1 LEPESHEVA GI, 2004, BIOCHEMISTRY-US, V43, P10789 LEPESHEVA GI, 2004, MOL CELL ENDOCRINOL, V215, P165 LEVIN EY, 1964, NATURE, V202, P90 LIN HK, 1972, PHYTOCHEMISTRY, V11, P2319 LIU Y, 2005, MOL ENDOCRINOL, V19, P1918 LODEIRO S, 2004, CHEMBIOCHEM, V5, P1581 MARCH J, 1992, ADV ORGANIC CHEM REA MCMAHON HT, 2005, NATURE, V438, P590 MEUNIER B, 2004, CHEM REV, V104, P3947 MEYER MM, 2000, ANGEW CHEM INT EDIT, V39, P4090 MEYER MM, 2002, ORG LETT, V4, P1395 NELSON DR, 1989, BIOCHEMISTRY-US, V28, P656 OURISSON G, 1987, ANNU REV MICROBIOL, V41, P301 PANCOST RD, 2000, APPL ENVIRON MICROB, V66, P1126 PAOLETTI C, 1976, LIPIDS, V11, P266 PEARSON A, 2003, P NATL ACAD SCI USA, V100, P15352 PETERS KE, 2004, BIOMARKER GUIDE PODUST LM, 2001, J INORG BIOCHEM, V87, P227 PODUST LM, 2001, P NATL ACAD SCI USA, V98, P3068 RAEDERSTORFF D, 1987, EUR J BIOCHEM, V164, P427 RASMUSSEN B, 1999, GEOLOGY, V27, P115 RAYMOND J, 2004, GEOBIOLOGY, V2, P199 REZEN T, 2004, J MOL EVOL, V59, P51 ROHMER M, 1973, EUR J BIOCHEM, V36, P446 ROHMER M, 1979, P NATL ACAD SCI USA, V76, P847 ROHMER M, 1984, J GEN MICROBIOL, V130, P1137 RONDET S, 1999, ARCH BIOCHEM BIOPHYS, V366, P249 ROSING MT, 2004, EARTH PLANET SC LETT, V217, P237 ROTHMAN DH, 2003, P NATL ACAD SCI USA, V100, P8124 ROUXEL OJ, 2005, SCIENCE, V307, P1088 SALLAL AK, 1987, ARCH MICROBIOL, V148, P1 SEGURA MJR, 2002, ORG LETT, V4, P4459 SHEN YA, 2001, NATURE, V410, P77 SHIMKETS L, 1992, P NATL ACAD SCI USA, V89, P9459 SIMONS K, 2004, ANNU REV BIOPH BIOM, V33, P269 SIMPSON AGB, 2005, J EUKARYOT MICROBIOL, V52, PS7 SLEEP NH, 2004, P NATL ACAD SCI USA, V101, P12818 SUMMONS RE, 1999, NATURE, V400, P554 SUMMONS RE, 2004, AM GEOPH UN FALL M 2 TEPPER HL, 2005, BIOPHYS J, V88, P3095 THIEL V, 1999, GEOCHIM COSMOCHIM AC, V63, P2959 THIEL V, 2003, ORG GEOCHEM, V34, P81 THOMA R, 2004, NATURE, V432, P118 TICE MM, 2004, NATURE, V431, P549 TORRES RA, 1999, P NATL ACAD SCI USA, V96, P14748 VOLKMAN JK, 2003, APPL MICROBIOL BIOT, V60, P495 VOLKMAN JK, 2005, ORG GEOCHEM, V36, P139 WAKEHAM SG, 1995, GEOCHIM COSMOCHIM AC, V59, P521 WALKER JCG, 1983, EARTHS EARLIEST BIOS, P260 WENDT KU, 1997, SCIENCE, V277, P1811 WENDT KU, 2000, ANGEW CHEM INT EDIT, V39, P2812 WENDT KU, 2005, ANGEW CHEM INT EDIT, V44, P3966 WOODWARD RB, 1953, J AM CHEM SOC, V75, P2023 XU F, 2005, P NATL ACAD SCI USA, V102, P14551 ZUNDEL M, 1985, EUR J BIOCHEM, V150, P35 |