Record 6501   View: Standard Glossary  HistCite Guide
Author(s): Summons RE; Bradley AS; Jahnke LL; Waldbauer JR
Title: Steroids, triterpenoids and molecular oxygen
Source: PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES 361 (1470): 951-968
Date: 2006 JUN 29
Document Type: Journal : Article
DOI:  
Language: English
Comment:  
Address: MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA.
NASA, Ames Res Ctr, Planetary Biol Branch, Moffett Field, CA 94035 USA.
Woods Hole Oceanog Inst, Joint Program Chem Oceanog, Cambridge, MA 02139 USA.
Reprint: Summons, RE, MIT, Dept Earth Atmospher & Planetary Sci, 77
Massachusetts Ave E34-246, Cambridge, MA 02139 USA.
E-mail: rsummons@mit.edu
Author Keywords:  
KeyWords Plus:  
Abstract: There is a close connection between modern-day biosynthesis of particular triterpenoid biomarkers and presence of molecular oxygen in the environment. Thus, the detection of steroid and triterpenoid hydrocarbons far back in Earth history has been used to infer the antiquity of oxygenic photosynthesis. This prompts the question: were these compounds produced similarly in the past? In this paper, we address this question with a review of the current state of knowledge surrounding the oxygen requirement for steroid biosynthesis and phylogenetic patterns in the distribution of steroid and triterpenoid biosynthetic pathways. The hopanoid and steroid biosynthetic pathways are very highly conserved within the bacterial and eukaryotic domains, respectively. Bacteriohopanepolyols are produced by a wide range of bacteria, and are methylated in significant abundance at the C2 position by oxygen-producing cyanobacteria. On the other hand, sterol biosynthesis is sparsely distributed in distantly related bacterial taxa and the pathways do not produce the wide range of products that characterize eukaryotes. In particular, evidence for sterol biosynthesis by cyanobacteria appears flawed. Our experiments show that cyanobacterial cultures are easily contaminated by sterol-producing rust fungi, which can be eliminated by treatment with cycloheximide affording sterol-free samples. Sterols are ubiquitous features of eukaryotic membranes, and it appears likely that the initial steps in sterol biosynthesis were present in their modern form in the last common ancestor of eukaryotes. Eleven molecules of O-2 are required by four enzymes to produce one molecule of cholesterol. Thermodynamic arguments, optimization of function and parsimony all indicate that an ancestral anaerobic pathway is highly unlikely. The known geological record of molecular fossils, especially steranes and triterpanes, is notable for the limited number of structural motifs that have been observed. With a few exceptions, the carbon skeletons are the same as those found in the lipids of extant organisms and no demonstrably extinct structures have been reported. Furthermore, their patterns of occurrence over billion year time-scales correlate strongly with environments of deposition. Accordingly, biomarkers are excellent indicators of environmental conditions even though the taxonomic affinities of all biomarkers cannot be precisely specified. Biomarkers are ultimately tied to biochemicals with very specific functional properties, and interpretations of the biomarker record will benefit from increased understanding of the biological roles of geologically durable molecules.
Cited References:
ABE I, 1993, CHEM REV, V93, P2189
ADL SM, 2005, J EUKARYOT MICROBIOL, V52, P399
ALTSCHUL SF, 1997, NUCLEIC ACIDS RES, V25, P3389
ANDING C, 1971, EUR J BIOCHEM, V24, P259
AOYAMA Y, 1994, BIOCHEM BIOPH RES CO, V201, P1320
ARISUE N, 2005, MOL BIOL EVOL, V22, P409
BACIA K, 2005, P NATL ACAD SCI USA, V102, P3272
BEKKER A, 2004, NATURE, V427, P117
BELLAMINE A, 2004, J LIPID RES, V45, P2000
BENVENISTE P, 2004, ANNU REV PLANT BIOL, V55, P429
BIRD CW, 1971, NATURE, V230, P473
BLANKENSHIP RE, 1998, TRENDS BIOCHEM SCI, V23, P94
BLANKSBY SJ, 2003, ACCOUNTS CHEM RES, V36, P255
BLOCH K, 1987, ANNU REV BIOCHEM, V56, P1
BLOCH KE, 1983, CRC CRIT R BIOCHEM, V14, P47
BODE HB, 2003, MOL MICROBIOL, V47, P471
BORDA MJ, 2003, GEOCHIM COSMOCHIM AC, V67, P935
BROCKS JJ, 1999, SCIENCE, V285, P1033
BROCKS JJ, 2003, GEOCHIM COSMOCHIM AC, V67, P4289
BROWN JR, 1999, J MOL EVOL, V49, P485
BRUICE TC, 1983, J AM CHEM SOC, V105, P2452
BUICK R, 2004, AM GEOPHYS UN FALL M
CARMACK CL, 1976, PHYSL PLANT PATHOL, V8, P43
CASTORENO AB, 2005, P NATL ACAD SCI USA, V102, P13129
CLOUD P, 1972, AM J SCI, V272, P537
DAHL CE, 1980, BIOCHEMISTRY-US, V19, P1462
DARNET S, 2003, BBA-MOL CELL BIOL L, V1633, P106
DARNET S, 2004, BIOCHEM J 3, V378, P889
DESMARAIS DJ, 1992, NATURE, V359, P605
DESMARAIS DJ, 2000, SCIENCE, V289, P1703
DESOUZA NJ, 1968, SCIENCE, V162, P363
EIGENBRODE JL, 2001, 11 VM GOLDSCH C HOT, P3461
EIGENBRODE JL, 2004, AM GEOPH UN FALL M 2
EIGENBRODE JL, 2004, THESIS PENNSYLVANIA
FARQUHAR J, 2000, NATURE, V404, P50
FARQUHAR J, 2000, SCIENCE, V289, P756
FISCHER WW, 2005, GEOBIOLOGY, V3, P33
GACHOTTE D, 1998, P NATL ACAD SCI USA, V95, P13794
GACHOTTE D, 1999, P NATL ACAD SCI USA, V96, P12655
GINER JL, 1991, BIOCH SYST ECOL, V19, P142
GROVES JT, 1995, CYTOCHROME P450 STRU, P1
HAI T, 1996, PHYTOCHEMISTRY, V41, P1083
HAINES TH, 2001, PROG LIPID RES, V40, P299
HALVERSON GP, 2005, GEOL SOC AM BULL, V117, P1181
HAYES JM, 2006, PHILOS T R SOC B, V361, P931
HOFFMAN PF, 2002, TERRA NOVA, V14, P129
HOLLAND HD, 1984, CHEM EVOLUTION ATMOS
HOLLAND HD, 1990, AM J SCI A, V290, P1
HOLLAND HD, 2002, GEOCHIM COSMOCHIM AC, V66, P3811
HOLTHUIS JCM, 2005, NAT REV MOL CELL BIO, V6, P209
HURTGEN MT, 2005, GEOLOGY, V33, P41
JACKSON CJ, 2002, J BIOL CHEM, V277, P46959
JACKSON LL, 1968, PHYTOCHEMISTRY, V7, P651
JAHNKE L, 1983, J BACTERIOL, V155, P488
JAHNKE LL, 1992, FEMS MICROBIOL LETT, V93, P209
JAHNKE LL, 2004, GEOBIOLOGY, V2, P31
JOUBERT BM, 2001, MOL BIOCHEM PARASIT, V117, P115
KANNENBERG E, 1983, BIOCHIM BIOPHYS ACTA, V733, P111
KARHU JA, 1996, GEOLOGY, V24, P867
KASTING JF, 1985, J GEOPHYS RES-ATMOS, V90, P10497
KIRSCHVINK JL, 2000, P NATL ACAD SCI USA, V97, P1400
KOHL W, 1983, J GEN MICROBIOL, V129, P1629
KOHLHASE M, 1988, PHYTOCHEMISTRY, V27, P1735
KOPP RE, 2005, P NATL ACAD SCI USA, V102, P11131
LADEN BP, 2000, ARCH BIOCHEM BIOPHYS, V374, P381
LAMB DC, 2003, BIOCHEM BIOPH RES CO, V307, P610
LAMOUR V, 1994, P NATL ACAD SCI USA, V91, P8670
LEE HK, 2000, ARCH BIOCHEM BIOPHYS, V381, P43
LEE HK, 2004, BIOCHEM BIOPH RES CO, V315, P1
LEPESHEVA GI, 2004, BIOCHEMISTRY-US, V43, P10789
LEPESHEVA GI, 2004, MOL CELL ENDOCRINOL, V215, P165
LEVIN EY, 1964, NATURE, V202, P90
LIN HK, 1972, PHYTOCHEMISTRY, V11, P2319
LIU Y, 2005, MOL ENDOCRINOL, V19, P1918
LODEIRO S, 2004, CHEMBIOCHEM, V5, P1581
MARCH J, 1992, ADV ORGANIC CHEM REA
MCMAHON HT, 2005, NATURE, V438, P590
MEUNIER B, 2004, CHEM REV, V104, P3947
MEYER MM, 2000, ANGEW CHEM INT EDIT, V39, P4090
MEYER MM, 2002, ORG LETT, V4, P1395
NELSON DR, 1989, BIOCHEMISTRY-US, V28, P656
OURISSON G, 1987, ANNU REV MICROBIOL, V41, P301
PANCOST RD, 2000, APPL ENVIRON MICROB, V66, P1126
PAOLETTI C, 1976, LIPIDS, V11, P266
PEARSON A, 2003, P NATL ACAD SCI USA, V100, P15352
PETERS KE, 2004, BIOMARKER GUIDE
PODUST LM, 2001, J INORG BIOCHEM, V87, P227
PODUST LM, 2001, P NATL ACAD SCI USA, V98, P3068
RAEDERSTORFF D, 1987, EUR J BIOCHEM, V164, P427
RASMUSSEN B, 1999, GEOLOGY, V27, P115
RAYMOND J, 2004, GEOBIOLOGY, V2, P199
REZEN T, 2004, J MOL EVOL, V59, P51
ROHMER M, 1973, EUR J BIOCHEM, V36, P446
ROHMER M, 1979, P NATL ACAD SCI USA, V76, P847
ROHMER M, 1984, J GEN MICROBIOL, V130, P1137
RONDET S, 1999, ARCH BIOCHEM BIOPHYS, V366, P249
ROSING MT, 2004, EARTH PLANET SC LETT, V217, P237
ROTHMAN DH, 2003, P NATL ACAD SCI USA, V100, P8124
ROUXEL OJ, 2005, SCIENCE, V307, P1088
SALLAL AK, 1987, ARCH MICROBIOL, V148, P1
SEGURA MJR, 2002, ORG LETT, V4, P4459
SHEN YA, 2001, NATURE, V410, P77
SHIMKETS L, 1992, P NATL ACAD SCI USA, V89, P9459
SIMONS K, 2004, ANNU REV BIOPH BIOM, V33, P269
SIMPSON AGB, 2005, J EUKARYOT MICROBIOL, V52, PS7
SLEEP NH, 2004, P NATL ACAD SCI USA, V101, P12818
SUMMONS RE, 1999, NATURE, V400, P554
SUMMONS RE, 2004, AM GEOPH UN FALL M 2
TEPPER HL, 2005, BIOPHYS J, V88, P3095
THIEL V, 1999, GEOCHIM COSMOCHIM AC, V63, P2959
THIEL V, 2003, ORG GEOCHEM, V34, P81
THOMA R, 2004, NATURE, V432, P118
TICE MM, 2004, NATURE, V431, P549
TORRES RA, 1999, P NATL ACAD SCI USA, V96, P14748
VOLKMAN JK, 2003, APPL MICROBIOL BIOT, V60, P495
VOLKMAN JK, 2005, ORG GEOCHEM, V36, P139
WAKEHAM SG, 1995, GEOCHIM COSMOCHIM AC, V59, P521
WALKER JCG, 1983, EARTHS EARLIEST BIOS, P260
WENDT KU, 1997, SCIENCE, V277, P1811
WENDT KU, 2000, ANGEW CHEM INT EDIT, V39, P2812
WENDT KU, 2005, ANGEW CHEM INT EDIT, V44, P3966
WOODWARD RB, 1953, J AM CHEM SOC, V75, P2023
XU F, 2005, P NATL ACAD SCI USA, V102, P14551
ZUNDEL M, 1985, EUR J BIOCHEM, V150, P35