Record 4648 View: Standard | Glossary HistCite Guide |
Author(s): CANFIELD DE
Title: FACTORS INFLUENCING ORGANIC-CARBON PRESERVATION IN MARINE-SEDIMENTS
Source: CHEMICAL GEOLOGY 114 (3-4): 315-329
Date: 1994 JUN 1
Document Type: Journal : Article
DOI:
Language: English
Comment:
Address: GEORGIA INST TECHNOL,SCH EARTH & ATMOSPHER SCI,ATLANTA,GA 30332.
Reprint:
E-mail:
Author Keywords:
KeyWords Plus:
Abstract: The organic matter that escapes decomposition is buried and preserved in marine sediments, with much debate as to whether the amount depends on bottom-water O2 concentration. One group argues that decomposition is more efficient with O2, and hence, organic carbon will be preferentially oxidized in its presence, and preserved in its absence. Another group argues that the kinetics of organic matter decomposition are similar in the presence and absence of O2, and there should be no influence of O2 on preservation. A compilation of carbon preservation shows that both groups are right, depending on the circumstances of deposition. At high rates of deposition, such as near continental margins, little difference in preservation is found with varying bottom-water O2. It is important that most carbon in these sediments decomposes by anaerobic pathways regardless of bottom-water O2. Hence, little influence of bottom-water O2 on preservation would, in fact, be expected. As sedimentation rate drops, sediments deposited under oxygenated bottom water become progressively more aerobic, while euxinic sediments remain anaerobic. Under these circumstances, the relative efficiencies of aerobic and anaerobic decomposition could affect preservation. Indeed, enhanced preservation is observed in low-O2 and euxinic environments. To explore in detail the factors contributing to this enhanced carbon preservation, aspects of the biochemistries of the aerobic and anaerobic process are reviewed. Other potential influences on preservation are also explored. Finally, a new model for organic carbon decomposition, the ''pseudo-G'' model, is developed. This model couples the degradation of refractory organic matter to the overall metabolic activity of the sediment, and has consequences for carbon preservation due to the mixing together of labile and refractory organic matter by bioturbation.
Cited References: ATLAS RM, 1981, MICROBIOLOGICAL REV, V45, P180 BENDER ML, 1984, GEOCHIM COSMOCHIM AC, V48, P977 BENNER R, 1984, APPL ENVIRON MICROB, V47, P998 BERNER RA, 1980, EARLY DIAGENESIS THE BERRY DF, 1987, MICROBIOL REV, V51, P43 BLACKBURN TH, 1993, MAR GEOL, V113, P101 BOOKTER TJ, 1982, ASCE J ENV ENG DIV, V108, P1089 BOUDREAU BP, 1993, GEOCHIM COSMOCHIM AC, V57, P317 BUCKLEY DE, 1988, GEOCHIM COSMOCHIM AC, V52, P2925 CALVERT SE, 1992, GEOLOGY, V20, P757 CALVERT SE, 1992, PRODUCTIVITY ACCUMUL, P231 CANFIELD DE, 1988, THESIS YALE U NEW HA CANFIELD DE, 1989, DEEP-SEA RES, V36, P121 CANFIELD DE, 1991, TAPHONOMY RELEASING, P337 CANFIELD DE, 1992, AM J SCI, V292, P659 CANFIELD DE, 1992, GEOL SOC AM, V24, P822 CANFIELD DE, 1993, GEOCHIM COSMOCHIM AC, V57, P3867 CANFIELD DE, 1993, INTERACTIONS C N P S, P333 CANFIELD DE, 1993, MAR GEOL, V113, P27 CHAMBERS CD, 1991, POLLUT TECH REV, V199 COLBERG PJ, 1988, BIOL ANAEROBIC MICRO, P333 COWIE GL, 1992, GEOCHIM COSMOCHIM AC, V56, P1963 COWIE GL, 1994, UNPUB NATURE LONDON CRIPPS RE, 1978, DEV BIODEGRADATION H, V1, P113 DEMAISON GJ, 1980, AAPG BULL, V64, P1179 DEVOL AH, 1983, LIMNOL OCEANOGR, V28, P738 EMERSON S, 1985, CARBON CYCLE ATMOSPH, P78 EMERSON S, 1988, PALEOCEANOGRAPHY, V3, P621 HEDGES JI, 1988, LIMNOL OCEANOGR, V33, P1137 HENRICHS SM, 1987, GEOMICROBIOL J, V5, P191 HUGHES JB, 1991, ONSITE BIORECLAMATIO, P59 INGALL ED, 1993, GEOCHIM COSMOCHIM AC, V57, P303 JAHNKE RA, 1986, EARTH PLANET SC LETT, V77, P59 JORGENSEN BB, 1978, GEOMICROBIOL J, V1, P29 JORGENSEN BB, 1982, NATURE, V296, P643 KEIL RG, 1994, GEOCHIM COSMOCHIM AC, V58, P879 KIRK TK, 1984, MICROBIAL DEGRADATIO, P399 KNAPP JS, 1985, PRACTICE BIOTECHNOLO, P835 KOSTER IW, 1988, BIOTREATMENT SYSTEMS, V1, P285 KRISTENSEN E, 1987, J MAR RES, V45, P231 LEE C, 1992, GEOCHIM COSMOCHIM AC, V56, P3323 LOVELY DR, 1988, APPL ENVIRON MICROB, V54, P1472 LOVELY DR, 1991, MICROBIOL REV, V55, P259 MAYER LM, 1992, GEOL SOC AM ABSTR, V24, P822 MCINERNEY MJ, 1981, APPL ENVIRON MICROB, V41, P346 MIDDELBURG JJ, 1989, GEOCHIM COSMOCHIM AC, V53, P1577 MIDDELBURG JJ, 1991, GEOCHIM COSMOCHIM AC, V55, P815 MURRAY JW, 1980, SCIENCE, V209, P1527 OTSUKI A, 1972, LIMNOL OCEANOGR, V17, P248 OTSUKI A, 1972, LIMNOL OCEANOGR, V17, P258 OURISSON G, 1984, SCI AM, V251, P44 PEDERSEN TF, 1990, AAPG BULL, V74, P454 PEDERSEN TF, 1992, GEOCHIM COSMOCHIM AC, V56, P545 POSTGATE JR, 1979, SULPHATE REDUCING BA PRATT LM, 1984, AAPG BULL, V68, P1146 REEBURGH WS, 1980, EARTH PLANET SC LETT, V47, P345 REIMERS CE, 1992, GLOBAL BIOGEOCHEM CY, V6, P199 REPETA DJ, 1989, GEOCHIM COSMOCHIM AC, V53, P699 REPETA DJ, 1990, SPEC REP OCEAN DRILL, P567 REPETA DJ, 1993, GEOCHIM COSMOCHIM AC, V57, P4337 RINZEMA A, 1988, BIOENVIRONMENTAL SYS, V1, P65 SCHINK B, 1988, BIOL ANAEROBIC MICRO, P771 SENIOR E, 1990, MICROBIOLOGY LANDFIL, P18 SMITH CR, 1992, DEEP SEA FOOD CHAINS, P395 SORENSEN J, 1981, APPL ENVIRON MICROB, V42, P5 STEIN R, 1986, BIOCH BLACK SHALES, V60, P55 VANCAPPELLEN P, 1993, GEOLOGY, V21, P570 VANCAPPELLEN P, 1993, INTERACTIONS C N P S, P401 VOGEL TM, 1986, APPL ENVIRON MICROB, V52, P200 WESTRICH JT, 1983, THESIS YALE U NEW HA WESTRICH JT, 1984, LIMNOL OCEANOGR, V29, P236 WILSON TRS, 1985, GEOCHIM COSMOCHIM AC, V49, P811 |