Record 4648   View: Standard Glossary  HistCite Guide
Author(s): CANFIELD DE
Title: FACTORS INFLUENCING ORGANIC-CARBON PRESERVATION IN MARINE-SEDIMENTS
Source: CHEMICAL GEOLOGY 114 (3-4): 315-329
Date: 1994 JUN 1
Document Type: Journal : Article
DOI:  
Language: English
Comment:  
Address: GEORGIA INST TECHNOL,SCH EARTH & ATMOSPHER SCI,ATLANTA,GA 30332.
Reprint:  
E-mail:  
Author Keywords:  
KeyWords Plus:  
Abstract: The organic matter that escapes decomposition is buried and preserved in marine sediments, with much debate as to whether the amount depends on bottom-water O2 concentration. One group argues that decomposition is more efficient with O2, and hence, organic carbon will be preferentially oxidized in its presence, and preserved in its absence. Another group argues that the kinetics of organic matter decomposition are similar in the presence and absence of O2, and there should be no influence of O2 on preservation. A compilation of carbon preservation shows that both groups are right, depending on the circumstances of deposition. At high rates of deposition, such as near continental margins, little difference in preservation is found with varying bottom-water O2. It is important that most carbon in these sediments decomposes by anaerobic pathways regardless of bottom-water O2. Hence, little influence of bottom-water O2 on preservation would, in fact, be expected. As sedimentation rate drops, sediments deposited under oxygenated bottom water become progressively more aerobic, while euxinic sediments remain anaerobic. Under these circumstances, the relative efficiencies of aerobic and anaerobic decomposition could affect preservation. Indeed, enhanced preservation is observed in low-O2 and euxinic environments. To explore in detail the factors contributing to this enhanced carbon preservation, aspects of the biochemistries of the aerobic and anaerobic process are reviewed. Other potential influences on preservation are also explored. Finally, a new model for organic carbon decomposition, the ''pseudo-G'' model, is developed. This model couples the degradation of refractory organic matter to the overall metabolic activity of the sediment, and has consequences for carbon preservation due to the mixing together of labile and refractory organic matter by bioturbation.
Cited References:
ATLAS RM, 1981, MICROBIOLOGICAL REV, V45, P180
BENDER ML, 1984, GEOCHIM COSMOCHIM AC, V48, P977
BENNER R, 1984, APPL ENVIRON MICROB, V47, P998
BERNER RA, 1980, EARLY DIAGENESIS THE
BERRY DF, 1987, MICROBIOL REV, V51, P43
BLACKBURN TH, 1993, MAR GEOL, V113, P101
BOOKTER TJ, 1982, ASCE J ENV ENG DIV, V108, P1089
BOUDREAU BP, 1993, GEOCHIM COSMOCHIM AC, V57, P317
BUCKLEY DE, 1988, GEOCHIM COSMOCHIM AC, V52, P2925
CALVERT SE, 1992, GEOLOGY, V20, P757
CALVERT SE, 1992, PRODUCTIVITY ACCUMUL, P231
CANFIELD DE, 1988, THESIS YALE U NEW HA
CANFIELD DE, 1989, DEEP-SEA RES, V36, P121
CANFIELD DE, 1991, TAPHONOMY RELEASING, P337
CANFIELD DE, 1992, AM J SCI, V292, P659
CANFIELD DE, 1992, GEOL SOC AM, V24, P822
CANFIELD DE, 1993, GEOCHIM COSMOCHIM AC, V57, P3867
CANFIELD DE, 1993, INTERACTIONS C N P S, P333
CANFIELD DE, 1993, MAR GEOL, V113, P27
CHAMBERS CD, 1991, POLLUT TECH REV, V199
COLBERG PJ, 1988, BIOL ANAEROBIC MICRO, P333
COWIE GL, 1992, GEOCHIM COSMOCHIM AC, V56, P1963
COWIE GL, 1994, UNPUB NATURE LONDON
CRIPPS RE, 1978, DEV BIODEGRADATION H, V1, P113
DEMAISON GJ, 1980, AAPG BULL, V64, P1179
DEVOL AH, 1983, LIMNOL OCEANOGR, V28, P738
EMERSON S, 1985, CARBON CYCLE ATMOSPH, P78
EMERSON S, 1988, PALEOCEANOGRAPHY, V3, P621
HEDGES JI, 1988, LIMNOL OCEANOGR, V33, P1137
HENRICHS SM, 1987, GEOMICROBIOL J, V5, P191
HUGHES JB, 1991, ONSITE BIORECLAMATIO, P59
INGALL ED, 1993, GEOCHIM COSMOCHIM AC, V57, P303
JAHNKE RA, 1986, EARTH PLANET SC LETT, V77, P59
JORGENSEN BB, 1978, GEOMICROBIOL J, V1, P29
JORGENSEN BB, 1982, NATURE, V296, P643
KEIL RG, 1994, GEOCHIM COSMOCHIM AC, V58, P879
KIRK TK, 1984, MICROBIAL DEGRADATIO, P399
KNAPP JS, 1985, PRACTICE BIOTECHNOLO, P835
KOSTER IW, 1988, BIOTREATMENT SYSTEMS, V1, P285
KRISTENSEN E, 1987, J MAR RES, V45, P231
LEE C, 1992, GEOCHIM COSMOCHIM AC, V56, P3323
LOVELY DR, 1988, APPL ENVIRON MICROB, V54, P1472
LOVELY DR, 1991, MICROBIOL REV, V55, P259
MAYER LM, 1992, GEOL SOC AM ABSTR, V24, P822
MCINERNEY MJ, 1981, APPL ENVIRON MICROB, V41, P346
MIDDELBURG JJ, 1989, GEOCHIM COSMOCHIM AC, V53, P1577
MIDDELBURG JJ, 1991, GEOCHIM COSMOCHIM AC, V55, P815
MURRAY JW, 1980, SCIENCE, V209, P1527
OTSUKI A, 1972, LIMNOL OCEANOGR, V17, P248
OTSUKI A, 1972, LIMNOL OCEANOGR, V17, P258
OURISSON G, 1984, SCI AM, V251, P44
PEDERSEN TF, 1990, AAPG BULL, V74, P454
PEDERSEN TF, 1992, GEOCHIM COSMOCHIM AC, V56, P545
POSTGATE JR, 1979, SULPHATE REDUCING BA
PRATT LM, 1984, AAPG BULL, V68, P1146
REEBURGH WS, 1980, EARTH PLANET SC LETT, V47, P345
REIMERS CE, 1992, GLOBAL BIOGEOCHEM CY, V6, P199
REPETA DJ, 1989, GEOCHIM COSMOCHIM AC, V53, P699
REPETA DJ, 1990, SPEC REP OCEAN DRILL, P567
REPETA DJ, 1993, GEOCHIM COSMOCHIM AC, V57, P4337
RINZEMA A, 1988, BIOENVIRONMENTAL SYS, V1, P65
SCHINK B, 1988, BIOL ANAEROBIC MICRO, P771
SENIOR E, 1990, MICROBIOLOGY LANDFIL, P18
SMITH CR, 1992, DEEP SEA FOOD CHAINS, P395
SORENSEN J, 1981, APPL ENVIRON MICROB, V42, P5
STEIN R, 1986, BIOCH BLACK SHALES, V60, P55
VANCAPPELLEN P, 1993, GEOLOGY, V21, P570
VANCAPPELLEN P, 1993, INTERACTIONS C N P S, P401
VOGEL TM, 1986, APPL ENVIRON MICROB, V52, P200
WESTRICH JT, 1983, THESIS YALE U NEW HA
WESTRICH JT, 1984, LIMNOL OCEANOGR, V29, P236
WILSON TRS, 1985, GEOCHIM COSMOCHIM AC, V49, P811