Record 8197 View: Standard | Glossary HistCite Guide |
Author(s): Feuerstein M; Chahen L; Doucet H; Santelli M
Title: Efficient synthesis of enynes by tetraphosphine-palladium-catalysed reaction of vinyl bromides with terminal alkynes
Source: TETRAHEDRON 62 (1): 112-120
Date: 2006 JAN 2
Document Type: Journal : Article
DOI:
Language: English
Comment:
Address: CNRS, UMR 6180, Organ Synth Lab, F-13397 Marseille, France.
Univ Aix Marseille 3, Fac Sci St Jerome, F-13397 Marseille, France. Reprint: Doucet, H, CNRS, UMR 6180, Organ Synth Lab, Ave Escadrille Normandie
Niemen, F-13397 Marseille, France. E-mail: henri.doucet@univ.u-3mrs.fr
m.santelli@univ.u-3mrs.fr Author Keywords: palladium; catalysis; sonogashira; vinyl bromides; alkynes
KeyWords Plus: SONOGASHIRA COUPLING REACTION; ARYL BROMIDES; COPPER-FREE; ROOM-
TEMPERATURE; C-C; ORGANIC HALIDES; ALKYNYLATION; ACETYLENES; HECK;
DERIVATIVES
Abstract: Through the use of [PdCl(C3H5)](2)/Cis,cis,cis-1,2,3,4-tetrakis(diphenylphosphinomethyl)cyclopentane as catalyst, a range of vinyl bromides undergoes Sonogashira cross-coupling reaction with a variety of alkynes, leading to the corresponding 1,3-enynes in good yields. The reaction tolerates several alkynes such as phenylacetylene, dec-1-yne, 2-methylbut-1-en-3-yne a range of alk-1-ynols, 3,3-diethoxyprop-1-yne and a propargyl amine. Higher reactions rates were observed in the presence of phenylacetylene, dec-1-yne, but-3-yn-1-ol, pent-4-yn-1-ol, 3,3-diethoxyprop-1-yne or 1,1-dipropyl-2-propynylamine than with propargyl alcohol, 3-methoxy-prop-1-yne or 2-methylbut-1-en-3-yne. This catalyst can be used at low loading even for reactions of sterically hindered vinyl bromides such as bromotriphenylethylene or 2-bromo-3-methyl-but-2-ene. (c) 2005 Elsevier Ltd. All rights reserved.
Cited References: ALAMI M, 1993, TETRAHEDRON LETT, V34, P6403 ALAMI M, 2001, J ORGANOMET CHEM, V624, P114 ALONSO DA, 2002, TETRAHEDRON LETT, V43, P9365 BOHM VPW, 2000, EUR J ORG CHEM NOV, P3679 BRANDSMA L, 1998, APPL TRANSITION META BUCHMEISER MR, 2001, J ORGANOMET CHEM, V634, P39 BUJARD M, 1998, TETRAHEDRON LETT, V39, P4243 CADDICK S, 2001, J ORGANOMET CHEM, V617, P635 CRISP GT, 1997, TETRAHEDRON, V53, P17489 DAI WM, 2001, TETRAHEDRON LETT, V42, P81 FEUERSTEIN M, 2001, CHEM COMMUN, P325 FEUERSTEIN M, 2001, J ORG CHEM, V66, P5923 FEUERSTEIN M, 2003, ORG BIOMOL CHEM, P2235 FEUERSTEIN M, 2004, SYNTHESIS-STUTT 0603, P1281 FEUERSTEIN M, 2004, TETRAHEDRON LETT, V45, P1603 FEUERSTEIN M, 2005, TETRAHEDRON LETT, V45, P8443 FEUERSTEIN M, 2005, TETRAHEDRON LETT, V46, P1717 FU XY, 2002, TETRAHEDRON LETT, V43, P6673 FUKUYAMA T, 2002, ORG LETT, V4, P1691 GALLAGHER WP, 2003, J ORG CHEM, V68, P6775 GENET JP, 1999, J ORGANOMET CHEM, V576, P305 GOMEZ AM, 2004, TETRAHEDRON LETT, V45, P6307 HALBES U, 2001, TETRAHEDRON LETT, V42, P8641 HAYASHI T, 1983, TETRAHEDRON LETT, V24, P2865 HERRMANN WA, 1998, J ORGANOMET CHEM, V557, P93 HEUZE K, 2004, CHEM-EUR J, V10, P3936 HUNDERTMARK T, 2000, ORG LETT, V2, P1729 KABBARA J, 1995, SYNTHESIS-STUTTG MAR, P299 KOLLHOFER A, 2003, CHEM-EUR J, V9, P1416 LAURENTI D, 2001, J ORG CHEM, V66, P1633 LEMHADRI M, 2005, SYNTHESIS-STUTT 0520, P1359 LOMBERGET T, 2002, SYNLETT SEP, P1439 MA YD, 2003, ORG LETT, V5, P3317 MCGAFFIN G, 1994, SYNTHESIS-STUTTG JUN, P583 MCGUINNESS DS, 2000, ORGANOMETALLICS, V19, P741 MORI A, 2001, SYNLETT MAY, P649 NEGISHI EI, 2003, CHEM REV, V103, P1979 OKURO K, 1993, J ORG CHEM, V58, P4716 ORGAN MG, 2004, TETRAHEDRON, V60, P17489 RATOVELOMANANA V, 1981, TETRAHEDRON LETT, V22, P315 SONOGASHIRA K, 1975, TETRAHEDRON LETT, V16, P4467 SONOGASHIRA K, 1998, METAL CATALYZED CROS SONOGASHIRA K, 2002, J ORGANOMET CHEM, V653, P46 WANG L, 2003, SYNTHETIC COMMUN, V33, P3679 |