Record 1182 View: Standard | Glossary HistCite Guide |
Author(s): Fujiki Y (Fujiki, Yutaka); Johnson KL (Johnson, Kirby L.); Peter I (Peter, Inga); Tighiouart H (Tighiouart, Hocine); Bianchi DW (Bianchi, Diana W.)
Title: Fetal Cells in the Pregnant Mouse Are Diverse and Express a Variety of Progenitor and Differentiated Cell Markers
Source: BIOLOGY OF REPRODUCTION 81 (1): 26-32
Date: 2009 JUL
Document Type: Journal : Article
DOI: 10.1095/biolreprod.108.074468
Language: English
Comment:
Address: [Fujiki, Yutaka; Johnson, Kirby L.; Bianchi, Diana W.] Floating Hosp Children, Dept Pediat, Tufts Med Ctr, Div Genet, Boston, MA 02111 USA.
[Fujiki, Yutaka] Univ Tsukuba, Dept Obstet & Gynecol, Inst Clin Med, Ibaraki, Japan. [Peter, Inga; Tighiouart, Hocine] Tufts Med Ctr, Inst Clin Res & Hlth Policy Studies, Boston, MA USA. Reprint: Bianchi, DW, Floating Hosp Children, Dept Pediat, Tufts Med Ctr, Div Genet, 800 Washington St,Box 394, Boston, MA 02111 USA
E-mail: dbianchi@tuftsmedicalcenter.org
Author Keywords: differentiation; fetal cell microchimerism; phenotype; pregnancy;
trafficking
KeyWords Plus: MESENCHYMAL STROMAL CELLS; STEM-CELLS; BONE-MARROW; MATERNAL
CIRCULATION; HEMATOPOIETIC STEM; MICROCHIMERISM; TRAFFICKING; MICE;
CHIMERISM; WOMEN
Abstract: To better understand fetomaternal cell trafficking during pregnancy, we used a mouse model to determine the cell surface markers expressed on fetal cells, based on the hypothesis that fetal progenitor cells have the capacity to repair maternal organs, whereas more differentiated cells might initiate graft versus host disease. Wild-type females were mated to either homozygous or hemizygous transgenic males and euthanized in the peripartum period. Using dual color flow cytometry, we analyzed fetal transgene positive cells for the presence of nine markers (ITGAM, ITGB1, PECAM, CD34, CD44, PTPRC, ENG, SLAMF1, and CXCR4) to begin to identify the phenotype and degree of differentiation of fetal cells in nine maternal organs (lung, liver, spleen, blood, bone marrow, kidney, heart, thymus, and brain). Fetal cells were found in all maternal organs following either type of mating, albeit always at a higher frequency following mating with homozygous males. Some organs (e.g., lung and liver) had a wide variety of fetal cell markers present, while other organs (e.g., bone marrow and spleen) had a skewed distribution of fetal cell markers. Fetal cells in the murine pregnant female are diverse. Our results suggest that the fetal cells comprise a mixed population of progenitor and differentiated cells, with different relative proportions in different maternal organs. Future studies will address whether fetal cells cross the placental barrier in a differentiated state or as a homogenous population and subsequently differentiate in target maternal organs.
Cited References: Fujiki Y, 2008, BIOL REPROD, V79, P841, DOI 10.1095/biolreprod.108.068973 Koopmans M, 2008, J REPROD IMMUNOL, V78, P68, DOI 10.1016/j.jri.2008.01.002 Mikhail MA, 2008, HUM REPROD, V23, P928, DOI 10.1093/humrep/dem417 Fujiki Y, 2008, CYTOM PART A, V73A, P111, DOI 10.1002/cyto.a.20533 Bianchi DW, 2007, JAMA-J AM MED ASSOC, V297, P1489 Khosrotehrani K, 2007, HUM REPROD, V22, P654, DOI 10.1093/humrep/del426 Huu SN, 2007, P NATL ACAD SCI USA, V104, P1871, DOI 10.1073/pnas.0606490104 Kolf CM, 2007, ARTHRITIS RES THER, V9, DOI 10.1186/ar2116 Guillot PV, 2006, SEMIN REPROD MED, V24, P340, DOI 10.1055/s-2006-952149 Dominici M, 2006, CYTOTHERAPY, V8, P315, DOI 10.1080/14653240600855905 Huu SN, 2006, STEM CELL REV, V2, P111 Kiel MJ, 2005, CELL, V121, P1109, DOI 10.1016/j.cell.2005.05.026 Khosrotehrani K, 2005, J REPROD IMMUNOL, V66, P1, DOI 10.1016/j.jri.2005.02.001 Koopmans M, 2005, AM J TRANSPLANT, V5, P1495, DOI 10.1111/j.1600-6143.2005.00858.x Jimenez DF, 2005, TRANSPLANTATION, V79, P142, DOI 10.1097/01.TP.0000144468.71962.AA Wang Y, 2004, BIOCHEM BIOPH RES CO, V325, P961, DOI 10.1016/j.bbrc.2004.10.105 Johnson KL, 2004, HUM REPROD UPDATE, V10, P497, DOI 10.1093/humupd/dmh040 O'Donoghue K, 2004, LANCET, V364, P179 Peister A, 2004, BLOOD, V103, P1662 Adams KM, 2003, BLOOD, V102, P3845 Meirelles LD, 2003, BRIT J HAEMATOL, V123, P702 Guo H, 2003, EXP HEMATOL, V31, P650, DOI 10.1016/S0301-472X(03)00087-0 Guetta E, 2003, BLOOD CELL MOL DIS, V30, P13, DOI 10.1016/S1079-9796(03)00008-1 Nakanishi T, 2002, GENOMICS, V80, P564, DOI 10.1006/geno.2002.7008 Gannage M, 2002, EUR J IMMUNOL, V32, P3405 Lambert NC, 2002, BLOOD, V100, P2845, DOI 10.1182/blood-2002-01-0295 Klintschar M, 2001, J CLIN ENDOCR METAB, V86, P2494 Viardot A, 1998, ANN HEMATOL, V77, P193 Nelson JL, 1998, LANCET, V351, P559 Okabe M, 1997, FEBS LETT, V407, P313 Barrat F, 1997, CLIN EXP IMMUNOL, V107, P593 Bonney EA, 1997, J IMMUNOL, V158, P40 Nelson JL, 1996, ARTHRITIS RHEUM, V39, P191 Bianchi DW, 1996, P NATL ACAD SCI USA, V93, P705 LIEGEOIS A, 1981, TRANSPLANT P, V13, P1250 LIEGEOIS A, 1977, TRANSPLANT P, V9, P273 |