Record 345 View: Standard | Glossary HistCite Guide |
Author(s): Shmulevich I; Dougherty ER; Mang W
Title: From Boolean to probabilistic Boolean networks as models of genetic regulatory networks
Source: PROCEEDINGS OF THE IEEE 90 (11): 1778-1792
Date: 2002 NOV
Document Type: Journal : Review
DOI:
Language: English
Comment:
Address: Univ Texas, MD Anderson Canc Ctr, Canc Genomics Lab, Houston, TX 77030 USA.
Texas A&M Univ, Dept Elect Engn, College Stn, TX 77843 USA. Reprint: Shmulevich, I, Univ Texas, MD Anderson Canc Ctr, Canc Genomics Lab,
1515 Holcombe Blvd, Houston, TX 77030 USA. E-mail:
Author Keywords: attractor; best-fit extension; Boolean network; cell differentiation;
coefficient of determination; consistency problem; gene; genetic
network; influence; Markov chain; microarray; nonlinear filter;
probabilistic Boolean network; root signal
KeyWords Plus: STACK FILTERS; ASSOCIATIVE MEMORY; LOGICAL ANALYSIS; ROOT PROPERTIES;
DRUG DISCOVERY; EXPRESSION; CLASSIFICATION; MICROARRAYS; ARRAYS;
PREDICTION
Abstract: Mathematical and computational modeling of genetic regulatory networks promises to uncover the fundamental principles governing biological systems in an integrative and holistic manner It also paves the way toward the development of systematic approaches for effective therapeutic intervention in disease. The central theme in this paper is the Boolean formalism as a building block for modeling complex, large-scale, and dynamical networks of genetic interactions. We discuss the goals of modeling genetic networks as well as the data requirements., The Boolean formalism is justified from several points of view. We then introduce Boolean networks and discuss their relationships to nonlinear digital filters. The role of Boolean networks in understanding cell differentiation and cellular-functional states is discussed. The inference of Boolean networks from real gene expression data is considered from the viewpoints of computational learning theory and nonlinear signal processing, touching on computational complexity of learning and robustness. Then, a discussion of the need to handle uncertainty in a probabilistic framework is presented, leading to an introduction of probabilistic Boolean networks and their relationships to Markov chains. Methods for quantifying the influence of genes on other genes are presented. The general question of the potential effect of individual genes on the global dynamical network behavior is considered using stochastic perturbation analysis. This discussion then leads into the problem of target identification for therapeutic intervention via the development of several computational tools based on first-passage times in Markov chains. Examples from biology are presented throughout the paper.
Cited References: AKUTSU T, 1998, P 9 ANN ACM SIAM S D, P695 AKUTSU T, 1999, PAC S BIOC, V4, P17 AKUTSU T, 2000, BIOINFORMATICS, V16, P727 ALBERTS A, 1983, MOL BIOL CELL ANTHONY M, 1992, COMPUTATIONAL LEARNI BENDOR A, 2000, J COMPUT BIOL, V7, P559 BODNAR JW, 1997, J THEOR BIOL, V188, P391 BORNHOLDT S, 2000, P ROY SOC LOND B BIO, V267, P2281 BOROS E, 1998, INFORMATION COMPUTAT, V140, P254 BOWER JM, 2001, COMPUTATIONAL MODELI BURKS AW, 1970, ESSAYS CELLULAR AUTO, P3 CELIS JE, 2000, FEBS LETT, V480, P2 CHEN Y, 1997, BIOMED OPTICS, V2, P364 CHO GE, 2000, LINEAR ALGEBRA APPL, V316, P21 CODD EF, 1968, CELLULAR AUTOMATA COYLE EJ, 1988, IEEE T ACOUST SPEECH, V36, P1244 COYLE EJ, 1989, IEEE T ACOUST SPEECH, V37, P2037 CRAMA Y, 1988, ANN OPER RES, V16, P299 DEJONG H, 2002, J COMPUT BIOL, V9, P69 DOUGHERTY ER, 1992, INTRO MORPHOLOGICAL DOUGHERTY ER, 1994, SIGNAL PROCESS, V40, P129 DOUGHERTY ER, 1999, NONLINEAR FILTERS IM DOUGHERTY ER, 2000, SIGNAL PROCESS, V80, P2219 DOUGHERTY ER, 2001, ADV IMAG ELECT PHYS, V117, P1 FITCH JP, 1984, IEEE T ACOUST SPEECH, V32, P1183 FITCH JP, 1985, IEEE T ACOUST SPEECH, V33, P230 GABBOUJ M, 1992, CIRCUITS SYST SIGNAL, V11, P888 GALLAGHER NC, 1981, IEEE T ACOUST SPEECH, V29 GARTEL AL, 1999, EXP CELL RES, V246, P280 GLASS L, 1973, J THEOR BIOL, V39, P103 GOLDBERG D, 1989, GENETIC ALGORITHMS S GOLUB TR, 1999, SCIENCE, V286, P531 HAMMER PL, 2000, SIAM J DISCRETE MATH, V13, P302 HARLEY CB, 1991, MUTAT RES, V256, P271 HASTY J, 2001, NAT REV GENET, V2, P268 HEDENFALK I, 2001, NEW ENGL J MED, V344, P539 HOLL JH, 1995, HIDDEN ORDER ADAPTAT HUANG S, 1999, J MOL MED-JMM, V77, P469 HUANG S, 2000, EXP CELL RES, V261, P91 HUANG S, 2001, PHARMACOGENOMICS, V2, P203 HUANG S, INTERJOURNAL GENETIC HUGHES TR, 2001, NAT BIOTECHNOL, V19, P342 IDEKER TE, 2000, PAC S BIOC, V5, P302 KARP RM, 1999, P 3 ANN INT C COMP M, P208 KAUFFMAN S, 1974, J THEOR BIOL, V44, P167 KAUFFMAN S, 1987, J THEOR BIOL, V128, P11 KAUFFMAN SA, 1969, J THEOR BIOL, V22, P437 KAUFFMAN SA, 1969, NATURE, V224, P177 KAUFFMAN SA, 1993, ORIGINS ORDER SELF O KAUFFMAN SA, 1995, HOME UNIVERSE KERR MK, 2002, COMPUTATIONAL STAT A KHAN J, 2001, NAT MED, V7, P673 KIM S, 2000, J BIOMED OPT, V5, P411 KIM SC, 2000, GENOMICS, V67, P201 KOBAYASHI T, 1998, CELL DEATH DIFFER, V5, P584 LIANG S, 1998, PAC S BIOCOMPUT, V3, P18 LIPSHUTZ RJ, 1999, NAT GENET S, V21, P20 LJUNG L, 1999, SYSTEM IDENTIFICATIO LOCE RP, 1992, VIS COMMUN IMAGE REP, V3 LOCKHART DJ, 2000, NATURE, V405, P827 MAKI Y, 2001, P PAC S BIOC, V6, P446 MCADAMS HH, 1999, TRENDS GENET, V15, P65 MENDOZA L, 1999, BIOINFORMATICS, V15, P593 MITCHELL M, 1994, PHYSICA D, V75, P361 MORALES FJ, 2001, PARALLEL COMPUT, V27, P539 MORAN G, 1995, T AM MATH SOC, V347, P1649 NODA K, 1998, GENOME INFORMATICS, V9, P141 PEARL J, 1997, PROBABILISTIC REASON PITT L, 1988, J ASSOC COMPUT MACH, V35, P965 PLATEAU B, 1991, J PARALLEL DISTR COM, V12, P370 SCHARF LL, 1991, STAT SIGNAL PROCESSI SCHENA M, 1995, SCIENCE, V270, P467 SCHNEIDER E, 1998, ONCOGENE, V17, P2733 SERRA J, 1982, IMAGE ANAL MATH MORP, V1 SHMULEVICH I, 2001, IEEE T SYST MAN CY B, V31, P251 SHMULEVICH I, 2002, BIOINFORMATICS, V18, P1319 SHMULEVICH I, 2002, BIOINFORMATICS, V18, P261 SHMULEVICH I, 2002, BIOINFORMATICS, V18, P555 SHMULEVICH I, 2002, COMPUTATIONAL STAT A SHMULEVICH I, IN PRESS J BIOL SYST SMOLEN P, 2000, NEURON, V26, P567 SOMOGYI R, 1996, COMPLEXITY, V1, P45 SPELLMAN PT, 1998, MOL BIOL CELL, V9, P3273 STERN MD, 1999, P NATL ACAD SCI USA, V96, P10746 SUH EB, 2002, COMPUTATIONAL STAT A SZALLASI Z, 1998, PAC S BIOCOMPUT, V3, P66 TABUS I, 2001, J APPL SIGNAL PROCES, V4, P297 TABUS I, 2002, COMPUTATIONAL STAT A THOMAS R, 1995, B MATH BIOL, V57, P247 VALIANT LG, 1984, COMMUN ACM, V27, P1134 VAPNIK V, 2000, NATURE STAT LEARNING WAGNER A, 2001, BIOINFORMATICS, V17, P1183 WANG QF, 1993, SIGNAL PROCESS, V34, P131 WENDT PD, 1986, IEEE T ACOUST SPEECH, V34, P898 WILDSMITH SE, 2001, J CLIN PATHOL-MOL PA, V54, P8 WOLF DM, 1998, J THEOR BIOL, V195, P167 WUENSCHE A, 1998, PAC S BIOCOMPUT, V3, P89 YANG RK, 1995, IEEE T SIGNAL PROCES, V43, P591 YU PT, 1990, IEEE T ACOUST SPSECH, V38, P888 YU PT, 1992, IEEE T CIRCUITS SYST, V39, P171 YU PT, 1992, IEEE T SIGNAL PROCES, V40, P2483 YUH CH, 1998, SCIENCE, V279, P1896 |