Record 345   View: Standard Glossary  HistCite Guide
Author(s): Shmulevich I; Dougherty ER; Mang W
Title: From Boolean to probabilistic Boolean networks as models of genetic regulatory networks
Source: PROCEEDINGS OF THE IEEE 90 (11): 1778-1792
Date: 2002 NOV
Document Type: Journal : Review
DOI:  
Language: English
Comment:  
Address: Univ Texas, MD Anderson Canc Ctr, Canc Genomics Lab, Houston, TX 77030 USA.
Texas A&M Univ, Dept Elect Engn, College Stn, TX 77843 USA.
Reprint: Shmulevich, I, Univ Texas, MD Anderson Canc Ctr, Canc Genomics Lab,
1515 Holcombe Blvd, Houston, TX 77030 USA.
E-mail:  
Author Keywords: attractor; best-fit extension; Boolean network; cell differentiation; coefficient of determination; consistency problem; gene; genetic network; influence; Markov chain; microarray; nonlinear filter; probabilistic Boolean network; root signal
KeyWords Plus: STACK FILTERS; ASSOCIATIVE MEMORY; LOGICAL ANALYSIS; ROOT PROPERTIES; DRUG DISCOVERY; EXPRESSION; CLASSIFICATION; MICROARRAYS; ARRAYS; PREDICTION
Abstract: Mathematical and computational modeling of genetic regulatory networks promises to uncover the fundamental principles governing biological systems in an integrative and holistic manner It also paves the way toward the development of systematic approaches for effective therapeutic intervention in disease. The central theme in this paper is the Boolean formalism as a building block for modeling complex, large-scale, and dynamical networks of genetic interactions. We discuss the goals of modeling genetic networks as well as the data requirements., The Boolean formalism is justified from several points of view. We then introduce Boolean networks and discuss their relationships to nonlinear digital filters. The role of Boolean networks in understanding cell differentiation and cellular-functional states is discussed. The inference of Boolean networks from real gene expression data is considered from the viewpoints of computational learning theory and nonlinear signal processing, touching on computational complexity of learning and robustness. Then, a discussion of the need to handle uncertainty in a probabilistic framework is presented, leading to an introduction of probabilistic Boolean networks and their relationships to Markov chains. Methods for quantifying the influence of genes on other genes are presented. The general question of the potential effect of individual genes on the global dynamical network behavior is considered using stochastic perturbation analysis. This discussion then leads into the problem of target identification for therapeutic intervention via the development of several computational tools based on first-passage times in Markov chains. Examples from biology are presented throughout the paper.
Cited References:
AKUTSU T, 1998, P 9 ANN ACM SIAM S D, P695
AKUTSU T, 1999, PAC S BIOC, V4, P17
AKUTSU T, 2000, BIOINFORMATICS, V16, P727
ALBERTS A, 1983, MOL BIOL CELL
ANTHONY M, 1992, COMPUTATIONAL LEARNI
BENDOR A, 2000, J COMPUT BIOL, V7, P559
BODNAR JW, 1997, J THEOR BIOL, V188, P391
BORNHOLDT S, 2000, P ROY SOC LOND B BIO, V267, P2281
BOROS E, 1998, INFORMATION COMPUTAT, V140, P254
BOWER JM, 2001, COMPUTATIONAL MODELI
BURKS AW, 1970, ESSAYS CELLULAR AUTO, P3
CELIS JE, 2000, FEBS LETT, V480, P2
CHEN Y, 1997, BIOMED OPTICS, V2, P364
CHO GE, 2000, LINEAR ALGEBRA APPL, V316, P21
CODD EF, 1968, CELLULAR AUTOMATA
COYLE EJ, 1988, IEEE T ACOUST SPEECH, V36, P1244
COYLE EJ, 1989, IEEE T ACOUST SPEECH, V37, P2037
CRAMA Y, 1988, ANN OPER RES, V16, P299
DEJONG H, 2002, J COMPUT BIOL, V9, P69
DOUGHERTY ER, 1992, INTRO MORPHOLOGICAL
DOUGHERTY ER, 1994, SIGNAL PROCESS, V40, P129
DOUGHERTY ER, 1999, NONLINEAR FILTERS IM
DOUGHERTY ER, 2000, SIGNAL PROCESS, V80, P2219
DOUGHERTY ER, 2001, ADV IMAG ELECT PHYS, V117, P1
FITCH JP, 1984, IEEE T ACOUST SPEECH, V32, P1183
FITCH JP, 1985, IEEE T ACOUST SPEECH, V33, P230
GABBOUJ M, 1992, CIRCUITS SYST SIGNAL, V11, P888
GALLAGHER NC, 1981, IEEE T ACOUST SPEECH, V29
GARTEL AL, 1999, EXP CELL RES, V246, P280
GLASS L, 1973, J THEOR BIOL, V39, P103
GOLDBERG D, 1989, GENETIC ALGORITHMS S
GOLUB TR, 1999, SCIENCE, V286, P531
HAMMER PL, 2000, SIAM J DISCRETE MATH, V13, P302
HARLEY CB, 1991, MUTAT RES, V256, P271
HASTY J, 2001, NAT REV GENET, V2, P268
HEDENFALK I, 2001, NEW ENGL J MED, V344, P539
HOLL JH, 1995, HIDDEN ORDER ADAPTAT
HUANG S, 1999, J MOL MED-JMM, V77, P469
HUANG S, 2000, EXP CELL RES, V261, P91
HUANG S, 2001, PHARMACOGENOMICS, V2, P203
HUANG S, INTERJOURNAL GENETIC
HUGHES TR, 2001, NAT BIOTECHNOL, V19, P342
IDEKER TE, 2000, PAC S BIOC, V5, P302
KARP RM, 1999, P 3 ANN INT C COMP M, P208
KAUFFMAN S, 1974, J THEOR BIOL, V44, P167
KAUFFMAN S, 1987, J THEOR BIOL, V128, P11
KAUFFMAN SA, 1969, J THEOR BIOL, V22, P437
KAUFFMAN SA, 1969, NATURE, V224, P177
KAUFFMAN SA, 1993, ORIGINS ORDER SELF O
KAUFFMAN SA, 1995, HOME UNIVERSE
KERR MK, 2002, COMPUTATIONAL STAT A
KHAN J, 2001, NAT MED, V7, P673
KIM S, 2000, J BIOMED OPT, V5, P411
KIM SC, 2000, GENOMICS, V67, P201
KOBAYASHI T, 1998, CELL DEATH DIFFER, V5, P584
LIANG S, 1998, PAC S BIOCOMPUT, V3, P18
LIPSHUTZ RJ, 1999, NAT GENET S, V21, P20
LJUNG L, 1999, SYSTEM IDENTIFICATIO
LOCE RP, 1992, VIS COMMUN IMAGE REP, V3
LOCKHART DJ, 2000, NATURE, V405, P827
MAKI Y, 2001, P PAC S BIOC, V6, P446
MCADAMS HH, 1999, TRENDS GENET, V15, P65
MENDOZA L, 1999, BIOINFORMATICS, V15, P593
MITCHELL M, 1994, PHYSICA D, V75, P361
MORALES FJ, 2001, PARALLEL COMPUT, V27, P539
MORAN G, 1995, T AM MATH SOC, V347, P1649
NODA K, 1998, GENOME INFORMATICS, V9, P141
PEARL J, 1997, PROBABILISTIC REASON
PITT L, 1988, J ASSOC COMPUT MACH, V35, P965
PLATEAU B, 1991, J PARALLEL DISTR COM, V12, P370
SCHARF LL, 1991, STAT SIGNAL PROCESSI
SCHENA M, 1995, SCIENCE, V270, P467
SCHNEIDER E, 1998, ONCOGENE, V17, P2733
SERRA J, 1982, IMAGE ANAL MATH MORP, V1
SHMULEVICH I, 2001, IEEE T SYST MAN CY B, V31, P251
SHMULEVICH I, 2002, BIOINFORMATICS, V18, P1319
SHMULEVICH I, 2002, BIOINFORMATICS, V18, P261
SHMULEVICH I, 2002, BIOINFORMATICS, V18, P555
SHMULEVICH I, 2002, COMPUTATIONAL STAT A
SHMULEVICH I, IN PRESS J BIOL SYST
SMOLEN P, 2000, NEURON, V26, P567
SOMOGYI R, 1996, COMPLEXITY, V1, P45
SPELLMAN PT, 1998, MOL BIOL CELL, V9, P3273
STERN MD, 1999, P NATL ACAD SCI USA, V96, P10746
SUH EB, 2002, COMPUTATIONAL STAT A
SZALLASI Z, 1998, PAC S BIOCOMPUT, V3, P66
TABUS I, 2001, J APPL SIGNAL PROCES, V4, P297
TABUS I, 2002, COMPUTATIONAL STAT A
THOMAS R, 1995, B MATH BIOL, V57, P247
VALIANT LG, 1984, COMMUN ACM, V27, P1134
VAPNIK V, 2000, NATURE STAT LEARNING
WAGNER A, 2001, BIOINFORMATICS, V17, P1183
WANG QF, 1993, SIGNAL PROCESS, V34, P131
WENDT PD, 1986, IEEE T ACOUST SPEECH, V34, P898
WILDSMITH SE, 2001, J CLIN PATHOL-MOL PA, V54, P8
WOLF DM, 1998, J THEOR BIOL, V195, P167
WUENSCHE A, 1998, PAC S BIOCOMPUT, V3, P89
YANG RK, 1995, IEEE T SIGNAL PROCES, V43, P591
YU PT, 1990, IEEE T ACOUST SPSECH, V38, P888
YU PT, 1992, IEEE T CIRCUITS SYST, V39, P171
YU PT, 1992, IEEE T SIGNAL PROCES, V40, P2483
YUH CH, 1998, SCIENCE, V279, P1896