Record 5133 View: Standard | Glossary HistCite Guide |
Author(s): Bernstein BE; Mikkelsen TS; Xie XH; Kamal M; Huebert DJ; Cuff J; Fry B; Meissner A; Wernig M; Plath K; Jaenisch R; Wagschal A; Feil R; Schreiber SL; Lander ES
Title: A bivalent chromatin structure marks key developmental genes in embryonic stem cells
Source: CELL 125 (2): 315-326
Date: 2006 APR 21
Document Type: Journal : Article
DOI:
Language: English
Comment:
Address: Massachusetts Gen Hosp, Mol Pathol Unit, Charlestown, MA 02129 USA.
Massachusetts Gen Hosp, Canc Res Ctr, Charlestown, MA 02129 USA. Harvard Univ, Sch Med, Dept Pathol, Boston, MA 02115 USA. Harvard Univ, Broad Inst, Cambridge, MA 02139 USA. MIT, Div Hlth Sci & Technol, Cambridge, MA 02139 USA. MIT, Whitehead Inst Biomed Res, Cambridge, MA 02139 USA. CNRS, Inst Genet Mol, UMR 5535, Montpellier, France. Univ Montpellier 2, Montpellier, France. Harvard Univ, Howard Hughes Med Inst, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. Reprint: Bernstein, BE, Massachusetts Gen Hosp, Mol Pathol Unit, Charlestown, MA
02129 USA. E-mail: bbernstein@partners.org
Author Keywords:
KeyWords Plus: POLYCOMB GROUP-COMPLEXES; HISTONE CODE; HUMAN GENOME; TRANSPOSABLE
ELEMENTS; EPIGENETIC REGULATION; X-INACTIVATION; METHYLATION; MOUSE;
BINDING; METHYLTRANSFERASE
Abstract: The most highly conserved noncoding elements (HCNEs) in mammalian genomes cluster within regions enriched for genes encoding developmentally important transcription factors (TFs). This suggests that HCNE-rich regions may contain key regulatory controls involved in development. We explored this by examining histone methylation in mouse embryonic stem (ES) cells across 56 large HCNE-rich loci. We identified a specific modification pattern, termed "bivalent domains," consisting of large regions of H3 lysine 27 methylation harboring smaller regions of H3 lysine 4 methylation. Bivalent domains tend to coincide with TF genes expressed at low levels. We propose that bivalent domains silence developmental genes in ES cells while keeping them poised for activation. We also found striking correspondences between genome sequence and histone methylation in ES cells, which become notably weaker in differentiated cells. These results highlight the importance of DNA sequence in defining the initial epigenetic landscape and suggest a novel chromatin-based mechanism for maintaining pluripotency.
Cited References: ARNAUD P, 2000, MOL CELL BIOL, V20, P3434 AYTON PM, 2004, MOL CELL BIOL, V24, P10470 BEJERANO G, 2004, SCIENCE, V304, P1321 BERNSTEIN BE, 2005, CELL, V120, P169 BOYER LA, 2005, CELL, V122, P947 BRUSTLE O, 1999, SCIENCE, V285, P754 CAO R, 2004, MOL CELL, V15, P57 CAWLEY S, 2004, CELL, V116, P499 CHAMBEYRON S, 2004, GENE DEV, V18, P1119 CONTI L, 2005, PLOS BIOL, V3, P1594, ARE283 DELAVAL K, 2004, CURR OPIN GENET DEV, V14, P188 FRANCIS NJ, 2004, SCIENCE, V306, P1574 GREALLY JM, 2002, P NATL ACAD SCI USA, V99, P327 GUENTHER MG, 2005, P NATL ACAD SCI USA, V102, P8603 HENIKOFF S, 2004, TRENDS GENET, V20, P320 JENUWEIN T, 2001, SCIENCE, V293, P1074 KAPRANOV P, 2002, SCIENCE, V296, P916 KIM TH, 2005, NATURE, V436, P876 KIMURA H, 2004, MOL CELL BIOL, V24, P5710 KIRMIZIS A, 2004, GENE DEV, V18, P1592 KOLI K, 2004, J CELL BIOL, V167, P123 KOSAK ST, 2004, SCIENCE, V306, P644 KOYANAGI M, 2005, J BIOL CHEM, V280, P31470 LANDER ES, 2001, NATURE, V409, P860 LEE JH, 2005, J BIOL CHEM, V280, P41725 LINDBLADTOH K, 2005, NATURE, V438, P803 LIPPMAN Z, 2004, NATURE, V430, P471 LIU CL, 2003, BMC GENOMICS, V4, AR19 MARGUERON R, 2005, CURR OPIN GENET DEV, V15, P163 MARTENS JHA, 2005, EMBO J, V24, P800 MOGASS M, 2004, BIOCHEM BIOPH RES CO, V325, P124 NOBREGA MA, 2003, SCIENCE, V302, P413 OCARROLL D, 2001, MOL CELL BIOL, V21, P4330 OKABE S, 1996, MECH DEVELOP, V59, P89 ONEILL LP, 2003, METHODS, V31, P76 ORLANDO V, 1998, EMBO J, V17, P5141 PEREZIRATXETA C, 2005, FEBS LETT, V579, P1795 PERRY P, 2004, CELL CYCLE, V3, P1645 PLATH K, 2003, SCIENCE, V300, P131 PRAYGRANT MG, 2005, NATURE, V433, P434 RIDEOUT WM, 2000, NAT GENET, V24, P109 RINGROSE L, 2004, ANNU REV GENET, V38, P413 RINGROSE L, 2004, MOL CELL, V16, P641 ROH TY, 2005, GENE DEV, V19, P542 SADO T, 2005, HUM MOL GENET, V14, PR59 SANTOSROSA H, 2003, MOL CELL, V12, P1325 SCHMITT S, 2005, GENE DEV, V19, P697 SCHRAETS D, 2003, ONCOGENE, V22, P3655 SILVA J, 2003, DEV CELL, V4, P481 SIMS RJ, 2005, J BIOL CHEM, V280, P41789 SZUTORISZ H, 2005, BIOESSAYS, V27, P1286 TAKAI D, 2002, P NATL ACAD SCI USA, V99, P3740 TOMCZAK KK, 2004, FASEB J, V18, P403 UMLAUF D, 2004, NAT GENET, V36, P1296 VALKLINGBEEK ME, 2004, CELL, V118, P409 VANSTEENSEL B, 2005, NAT GENET S, V37, PS18 WATERSTON RH, 2002, NATURE, V420, P520 WOOLFE A, 2005, PLOS BIOL, V3, P116, ARE7 WYSOCKA J, 2005, CELL, V121, P859 |