	Current Comments
	The 1,000 Most-Cited Contemporary Authors. Part 2C. Details on Authors in Hematology, Histology, Immunology, Microbiology, Physiology, and Virology
Number 22	May 31, 1982

This essay is the fourth part of our study of the 1,000 most-cited contemporary scientists. The study is based on data for articles published by these authors from 1965 to 1978—that's why we call them "contemporary." Citation data on these articles were taken from journals indexed in *Science Citation Index*[®] (*SCI*[®]). We did *not* count citations to books. The citation counts reflect "all-author" data—that is, each author was treated as a first author, whether or not his or her name appeared first in an article's by-line.

In Part 1 of this series, we provided the entire list of 1,000 authors.¹ That was followed by Part 2A which presented citation and authorship data on 214 scientists in the physical and chemical sciences: aeronomy, astronomy, astrophysics, geophysics, physics, chemical physics, physical chemistry, inorganic chemistry, organic chemistry, organometallic chemistry, analytical chemistry, and theoretical chemistry.²

Part 2B covered 267 authors in seven life sciences fields: biochemistry, biophysics, cell biology, enzymology, genetics, molecular biology, and plant sciences.³ This part covers 238 authors in six additional life sciences that are more clinically oriented. The next part will cover 13 even more clinically oriented fields listed at the end of this essay.

As you can see, modern science is a very specialized enterprise. This is especially true of the life sciences—a total of 26 life sciences disciplines will be covered in this study. In order to avoid mistaken classifications, we decided to have the authors in this study tell us under what disciplines they should be placed. We did this by providing a questionnaire which included a list of specialties which each author simply checked off. However, some of them checked as many as five separate specialties. In these cases, we examined their papers, institutional affiliations, academy memberships, and other indicators to decide on the most appropriate "pigeonhole."

Table 1 lists the names of the 238 authors who were classified as immunologists, virologists, microbiologists, physiologists, histologists, or hematologists. The names are arranged in alphabetical order under the appropriate specialty headings in order to avoid spurious comparisons between individual citation counts. Remember that 1,000 authors represent only .2 percent of an estimated 500,000 scientists publishing worldwide. Although almost all of the 1,000 mostcited authors are of Nobel class,⁴ many more authors not shown on these lists are equally eminent. A world academy of sciences would probably accommodate from 2.000 to 5.000 members.

Table 1 provides counts of citations and *cited* papers for each author. These totals are "disaggregated" to show the number of citations received, and the

 Table 1: The most-cited scientists in the preclinical basic sciences (second group), listed alphabetically by fields. Date of birth is in parentheses. A=total citations. B=first author citations. C=citations as a secondary author. D=total number of cited papers. E=first author papers. F=secondary-authored papers. G=citations/paper. Academy memberships are indicated by a code in column H. A key to these codes appears in Table 2. Asterisks indicate Nobel prizewinners.

	A	в	с	D	Е	F	G	н		Α	в	с	D	Е	F	G	н
Immunology	~	5	•	-	-	•	-		Immunology (cont.)		-	-	-	_	·	_	
ALLISON AC (1925)	6846	3456	3390	193	75	118	35		KLEBANOFF SJ (1927)	2476	1666	810	56	22	34	44	
ALPER CA (1931)	2918	1670	1248	88	39	49	33		KLEIN E (1925)	3910	579	3331	172	22	150	22	
AMOS DB (1923)	2958	886	2072	122	28	94	24		KLEIN G (1925)	10347	3360	6987	387	111	276	26	ABD
AOKI T (1930)	2854	1037	1812	58	27	31	49		KUNKEL HG (1916)	9134	556	8578	168	17	151	54	ABE
ASKONAS BA (1923)	2542	920	1622	55	22	33	46	С	LAURELL CB (1919)	4283	3417	866	63	33	30	67	E F
ASOFSKY R (1933)	2598	64	2534	81	5	76	32		LEDERER E (1908)	2670	187	2483	131	- 9	122	20	FITa
AUSTEN KF (1928)	8538	368	8170	271	13	258	31	AB	LEVINE L (1924)	4223	727	3496	195	45	150	21	
AVRAMEAS S (1930)	4717	3017	1700	113	30	83	41		LICHTENSTEIN LM (1934)	3955	1483	2472	166	44	122	-23	
BACH FH (1934)	4975	2076	2899	154	44	110	32		MACKANESS GB (1922)	3078	1599	1479	49	17	32	-62	BC
BACH JF (1940)	2806	2149	657	139	73	66	20	U	MACKAY IR (1922)	3330	803	2527	148	- 29	119	22	
BASTEN A (1939)	2790	1580	1210	41	15	26	68		MARCHALONIS JJ (1940)	2733	1876	857	77	32	45	35	
BENACERRAF B (1920) *	8694	1071	7623	242	25	217	35	AB	MCDEVITT HO (1930)	4366	1668	2698	97	20	7.7	45	А
BIANCO C (1941)	2644	1197	1447	28	11	17	94		MERGENHAGEN SE (1930)	3188	298	2890	95	12	83	33	
BLANDEN RV (1938)	2463	1158	1305	51	20	31	48	н	MERRILL JP (1917)	5229	252	4977	203	20	183	25	в
BLOCH KJ (1929)	2931	578	2353	116	15	101	25		MICKEY MR (1923)	3:27	25	3102	93	3	90	33	
BORSOS T (1927)	3404	866	2538	124	15	109	27		MILLER JEAP (1931)	6562	2802	3760	100	41	59	65	ACH
BOYSE EA (1923)	10159	1563	8596	174	22	152	58	ABC	MILSTEIN C (1927)	3130	1315	1815	87	24	63	35	Α(
BRUNNER KT (1918)	2917	1032	1885	44	7	37	66		MOLLER G (1936)	5315	1937	3378	126	49	11	4.'	
CANTOR H (1942)	2508	1922	586	47	24	23	53		MULLER-EBERHARD HJ (1927)	7579	1260	6319	157	: 3	44	43	Δ
CEROTTINI JC (1938)	3103	1226	1877	64	25	39	48		NAJARIAN JS (1927)	3446	444	3002	301	21	280	11	
CLAMAN HN (1930)	3076	1597	1479	83	32	51	37		NATVIG JB (1934)	2726	587	2139	136	33	103	-20	
COCHRANE CG (1930)	3848	1348	2500	89	21	68	43		NOSSAL GJV (1931)	3409	1712	1697	79	4]	38	4.3	ABH
COHN M (1922)	2749	239	2510	72	23	49	38		NUSSENZWEIG V (1928)	3957	245	3712	66	11	55	59	
COOPER MD (1933)	5774	2133	3641	162	43	119	35		OPPENHEIM JJ (1934)	3631	1535	2096	87	27	60	41	
DAUSSET J (1916) *	2861	1044	1817	203	69	134	14	AU	PARKER CW (1930)	3896	803	3093	162	32	130	24	
DAVID JR (1930)	4243	1544	2699	102	26	76	41	В	PARKS WP (1941)	2568	940	1628	71	25	46	36	
DIXON FJ (1920)	7456	623	6833	161	16	145	46	Α	PAUL WE (1936)	6082	685	5397	145	- 25	120	4]	A

Immunology (cont.)	٩	80	ပ	•	ш	LL.	G	I
61) d	4373	<u> </u>	3218	:27	54	:03	34	
PHILIPS RA (1937) PRESSMAN D / 1916)	ρa	n c	s.	200 200	0 m		2.1	
1925)	2 6	277	2.2	$-\infty$	- 20 4		e C	
ҚАРР НЈ (1923)	96	d.	5	:29	<u>.</u>	°∷	34	
REISFELD RA (1926)	œ	79:		171	<u></u>	:03	30	
ROITI IM (1927)	4014	c.,	00	66	σ	6	40	
ROSEN FS (1930)	4939	4	4398	147	20	127	33	
ROSENTHAL AS (1939)	3938	889	4	80	20	60	49	
ROWE DS (1925)	9	:407	:285	89	32	57	30	
SCHUR PH (1933)	3561	680	2881		25	80	ЗŽ	
SCHWARTZ RS (1928)	2840	946	68	67	σ.	4 8	40	
SEEGMILLER JE (1920)	4753	704	04		5	149	38	₽{
SELA M (1924)	4785	537	4	215	<u></u>	202	22	AB 51
SELL S (1935)	2719	1764	955		57	47	26	
SHEVACH EM (1943)	2456	1047	0	64	5	40	38	
SIMMONS RL (1934)	4255	:454	80	295	62	233	4	
SPRENT J (1941)	3045	890	5	61	30	ŝ	49	
STARZL TE (1926)	5119	2258	2861	188	66	122	27	в
STEINBERG AD (1940)	2573	006	2	140	36	104	÷	
STORB RF (1935)	3563	:223	m	160	54	:06	22	
STROBER W (1937)	2821	362	45	83	12	7:	33	
SVEJGAARD A (1937)	2439	457	98	102	21	8	23	æ
TALAL N (1934)	3550	795	75	\sim	33	105	25	
TAN EM (1926)	2783	4	73	94	27	67	29	
TERASAKI PI (1929)	\sim	734	64	237	20	217	31	
TERRY WD (1933)	∞	609	20	85	67	66	33	
TOMASI TB (1927)	ŝ	1313	8	102	17	85	32	
UHR JW (1927)	3925	517	0	110	10	100	35	
UNANUE ER (1934)		2178	92	119	44	75	42	
VANROOD JL (1926)	2582	763	8	119	37	82	21	+
WAKSMAN BH (1919)	3405	293	Ξ	128	23	105	26	æ
WALDMANN TA (1930)	0	1717	37	115	29	86	35	

lmmunology (cont.)	٩	Ê	U	٥	ш	Ľ	G	I
DOUGLAS SD (1939)	3098	663	2105	132	46	86	ĉ.	
DRAY S (1920)	2764	53	2711	131	ŝ	: 26	Ę	
DUTTON RW (1930)	3568	976	2592		σ_{11}	4.,	58	
EDELMAN GM (1929) *	2475	2566	40	139	24	1:5	57	ΑН
FAHEY JL (1924)	$\hat{\mathbf{n}}$	2006	2277	98	20	78	43	
FEFER A (1938)	2775	686		97	23	74	en C	
FELDMANN M (1944)	75	2237		92	4	50	40	
FRANK MM (1937)	۰.	\sim	2272	113	23	90	23	
FRANKLIN EC (1928)	2854	365	2489	:36	36	00:	20	4
FREEDMAN SO (1928)	4	58	\cap	49	0.7	30	64	z
FUDENBERG HH (1928)	60	516	0	371	26	345	5	
GERSHON RK (1932)	2746	1685	9	16	38	53	30	A
GEWURZ H (1936)	93	879	2051	4	3.	4	20	
GILDEN RV (1935)	39	613	1	:57	2.:	: 36	27	
GOOD RA (1922)	6	349	\sim	\sim	27	645	26	ч
GRAHAM RC (1934)	32	2852	5	49	20	29	67	
GREAVES MF (1941)	65	1386	27	80	24	56	45	
GREEN I (1926)	4329	635	69	118	$\frac{\infty}{2}$	00:	36	
HABER E (1932)	65	1538	Ξ.	Ó	24	. 4	34	œ
HELLSTROM I (1932)	50	4279	22	102	49	53	63	
HELLSTROM KE (1934)	6145	684	5461	:03	5	ိုး	59	
HENNEY CS (1941)	73	1393	33	86	ð M	4.7	m	
HEREMANS JF (1927)	52		45		ŝ	:08	ŝ	٢,
HERSH EM (1935)	32	0	52	:59	43	ې: ::	17	
HERZENBERG LA (1931)	56	œ	08	78	::	67	с) Ч	4
HOLBOROW EJ (1918)	31	- 4	0	101	: 1	84	ŝ	
HONG R (1929)	66	ŝ	30	102	ж	84	92	
ISHIZAKA K (1925)	2	\sim	77	\sim	45	523	30	
ISHIZAKA T (1926)	50	17	33	93	38	55	37	
JOHANSSON SGU (1938)	85	0	54		9.	70	ن م	
JONDAL MB (1943)	53	27	26	9.6 8		e e	39	
BAT EA (19	õ.	ŝ	σ		24		30	ЧЧ
KATZ DH (1943)	à	2123	42	62	40	55	38	

									1								
lmmunology (cont.)	A	B	С	D	E	F	G	н	Physiology (cont.)	A	B	С	D	E	F	G	н
WARNER NL (1939)	3436	686	2750	100	28	72	34		BUTCHER RW (1930)	6511	1935	4576	46	12	34	:4:	
WARREN KS (1929)	2447	827	1620	178	60	118	13	£	CAHILL GF (1927)	3783	943	2840	90	26	64	42	
WEIGLE WO (1927)	2723	513	2210	104	25	79	26		CARLSON LA (1928)	3374	1858	:516	143	80	63	23	
WIGZELL HLR (1938)	7243		6415	136	16	120	53		COBURN JW (1932)	2928	574	2354	147	36	111	19	
WILLIAMS RC (1928)	4037		3155	234	30	204	17		COVELL JW (1936)	4579	427	4152	88	è	79	52	
WOLFF SM (1930)	2981	307	2674	149		136	20		DAVIS JO (1916)	2483	592	1891	:08	18	90	22	AD
YUNIS EJ (1929)	3511	942		189		154	18		DIAMOND JM (1937)	2845	1643	1202	87	45	42	32	-
ZIFF M (1913)	2742	195	2547	159	10	149	17		DOWLING JE (1935)	2695	1536	1159	52	25	- 27	51	AB
									GIBSON QH (1918)	2588	600	1988	110	24	86		ABC
Virology									GROSSMAN MI (1919)	6693		5780	247	51	196	27	-
									HUBEL DH (1926) *	3764	2814	950	33	23	:0	-	ABt
BALTIMORE D (1938) *		2332		131	21	110		AB	JOHNSON LR (1942)	2760	1690	1070	149	63	86	18	
BISHOP JM (1936)	3545			115	24	91	30	Α	JOUVET M (1925)	3137	1600	1537	97	20	71	32	
BLACK PH (1930)	2690	392		97	14	83	27		KLEEMAN CR (1923)	2552	280	2272	111	13	98	22	
CHANOCK RM (1924)	6089		5633	200	8	192	30		KRNJEVIC K (1927)	2821	2170	651	73	48	25	38	
CHOPPIN PW (1929)	3008	230		64	7	57	47	A	LASSEN NA (1926)	2995	912		130	35	95	23	
DUESBERG PH (1936)	3071	1869		50	21	29	61		LEVER AF (1929)	3397		3382	131	2		25	-
FRIEDMAN RM (1932)		1115		94	47	47	26		MACKLEM PT (1931)	3247	1018		94	23	7 :	34	
HARTLEY JW (1928)		1388		38	8	30	110		MASSRY SG (1930)	2965		:906	157	40	117	18	
HENLE G (1912)		2212		103	13	90	66		MILIC-EMILI J (1931)	2439	428	2011	71	8	63	34	
HENLE W (1910)		1423		113	24	89	55		ORLOFF J (1921)	2531		1950	60	9	51	42	
HILLEMAN MR (1919)	3447	530		136	26	110	25	-	PAGE IH (1901)	2715	222		96	32	64		ABE
JOKLIK WK (1926)	3084	678	_	64	11	53	48		PARK CR (1916)	3877	68	3809	63	2	61	61	
KRUGMAN S (1911)	2911	1754		63	36	27	46	AB	PORTER JC (1925)	2730	243	2487	92	20	72	29	
MELNICK JL (1914)	6427	440		297	49	248	21		RECTOR FC (1929)	3623	691	2932	75	9	66	48	
MERIGAN TC (1934)	3544	677		138	26	112	25		RUDOLPH AM (1924)	2580		1525	117	25	95	22	
NAHMIAS AJ (1930)	-	1752	-	97	37	60	32		SALTIN B (1935)	2777		2265	104	19	85	26	
PRINCE AM (1928)	3754	2350		94	34	60	39		SCHULTZ SG (1931)	3029		1663	72	24	48	42	
PURCELL RH (1935)	4406		3526	126	17	109	34		SELDIN DW (1920)	2924	-	2670	66	9	57		BC E
RAPP F (1929)	3903	840		196	40	156	19		SWAN HJC (1922)	4196	571	3625	175	10	165	23	
RAWLS WE (1933)	3112	-		118	29	89	26		WALTER R (1937)	2857	802	2055	180	61	119	15	
ROIZMAN B (1929)	3290	300		88	13	75	37		WEIBEL ER (1929)	2958	1386	1572	87	28	59	34	
ROWE WP (1926)	6655	1562	5093	107	21	86	62	A	WIESEL TN (1924) *	3634	813	2821	32	6	26	113	AB

	А	в	с	D	E	F	G	н
Virology (cont.)		-	•	-	-	•	-	
SAMBROOK J	2442	704	1738	29	7	22	84	
SCOLNICK EM (1940)	3493	1083	2410	80	22	58	43	
SHATKIN AJ (1934)	3347	876	2471	79	13	66	42	А
STEPHENSON JR (1942)	2582	1375	1207	104	44	60	24	
STROMINGER JL (1925)	6312	524	5788	209	12	197	30	ABE
VINUELA E (1937)	3471	270		37	5	32	93	B
VOGT PK (1932)	3728	979	2749	68	16	52	54	A
Microbiology								
FINLAND M (1902)	3252	472	2780	121	36	85	26	AB
GIBBONS RJ (1932)	2447	1410	1037	62	24	38	39	
GORBACH SL (1934)	3460	1654	1806	127	38	89	27	
KIRBY WMM (1914)	2568	205	2363	45	11	34	57	
KOPROWSKI H (1916)	4229	444	3785	202	14	188	20	ABI
LUDERITZ () (1920)	2980	879	2101	81	11	70	36	
MCCARTHY BJ (1934)	3943	435	3508	85	12	73	46	
NATHANS D (1928)*	2781	468	2313	54	9	45	51	А
PHILIPSON L (1929)	2911	489		90	12	78	32	1
RAZIN S (1929)	2451	1119		92	32	60	26	
REMINGTON JS (1931)	3354	822	2532	133	30	103	25	
ROBBINS JB (1932)	2436	864	1572	75	14	61	32	
SEVER JL (1932)	3444	704		184	39	145	18	
STANIER RY (1916)	2506		1483	42	7	35		ABC
TAKEUCHI T (1923)	4480	932		430	103	327	10	
UMEZAWA H (1914)	7808	1767		546	54	492	-	8Fdi
WEINSTEIN L (1909)	3031	526	2505	153	45	108	19	8
Physiology								
AUSTEN WG (1930)	3792	476	3316	190	24	166	19	6

AUSTEN WG (1930) 3792 476 3316 190 24 166 19 B BROWN JJ (1927) 3368 1927 1441 149 65 84 27 \$

	A	в	С	D	Ε	F	G	н
Histology								
DAHLSTROM A (1941)	2513	1035	1478	59	29	30	42	
FALCK B (1927)	2721	454	2267	100	19	81	27	
FAWCETT DW (1917)	2472	1355	1117	55	19	36	44	Α
JONSSON G (1941)	3290	911	2379	126	53	73	26	
LEBLOND CP (1910)	4024	57	3967	76	6	70	52	BCN
ORCI L (1937)	3600	1167	2433	193	55	138	18	
OWMAN C (1939)	3448	663	2785	160	23	137	21	
Hematology								
BAEHNER RL (1934)	2645	1583	1062	102	34	68	25	
BERNARD J (1907)	2656	465	2191	273	81	192	9	υv
BEUTLER E (1928)	4483	2542	1941	249	122	127	18	AB
CLEGG JB (1936)	2992	1381	1611	88	22	66	34	
CLINE MJ (1934)	3699	1483	2216	130	46	84	28	
FINCH CA (1915)	2951	350	2601	106	15	91	27	AB
GIBLETT ER (1921)	2447	796	1651	79	17	62	30	Α
HERBERT VD (1927)	4716	2069	2647	147	49	98	32	
HOFFBRAND AV (1935)	2896	824	2072	137	41	96	21	
HOLM G (1930)	3207	901	2306	82	29	53	39	
MCCULLOCH EA (1926)	3161	249	2912	81	10	71	39	N
METCALF D (1929)	5099	2085	3014	130	66	64	39	н
NATHAN DG (1929)	3269	625	2644	142	29	113	23	
NILSSON IM (1923)	2914	478	2436	193	42	151	15	
OSKI FA (1932)	2816	952	1864	165	42	123	17	
OWEN CA (1915)	2475	266	2209	190	33	157	13	
PACKHAM MA (1927)	3233	758	2475	100	22	78	32	
RATNOFF OD (1916)	2945	681	2264	127	40	87	23	Α
SELIGMANN MG (1927)	4248	1230	3018	126	33	93	33	
SHULMAN NR (1925)	2890	774	2116	63	10	53	45	
WEATHERALL DJ (1933)	3232	756	2476	115	39	76	28	С
WEISS HJ (1929)	3260	2588	672	85	62	23	38	

Table 2: Academy memberships of the 238 authors in the life sciences, second group, including the number of authors from each academy.

A = National Academy of	
Sciences, US	52
B = American Academy of Arts	52
and Sciences	37
C = Royal Society of London, UK	10
D= American Philosophical	
Society	2
E = Institute of Medicine, US	2 7
F = Deutsche Akademie der	
Naturforscher Leopoldina,	
DDR	5
H = Australian Academy of	
Science	4
I = Austrian Academy of Sciences	1
J = Royal Academy of Sciences,	
Letters and Fine Arts of	
Belgium	1
N = Royal Society of Canada	4
R = Royal Danish Academy of	
Sciences and Letters	1
S = Royal Society of Edinburgh,	
UK	2
T = Academy of Finland	1
U = Academy of Sciences of	
France	4
V= Académie Française	1
Z = Indian National Science	
Academy, New Delhi	1
a = Royal Irish Academy b = Israel Academy of Sciences	1
and Humanities	1
d = Japan Academy	1
f = Royal Netherlands Academy	
of Sciences and Letters	1
i = Pontifical Academy of	•
Sciences	1
1 = Royal Swedish Academy of	•
Sciences	6
u = Yugoslav Academy of	v
Sciences and Arts	1
ding.,,	

number of cited papers published, as a first or secondary author. Also listed is the author's "citation rate"—the average number of citations per paper. Citation rates are calculated by dividing citations received (column A) by the number of cited papers (column D). Each author's year of birth is shown in parentheses.

Taken as a group, the authors in these six life sciences disciplines received more

Table 3: Authors, listed in this essay, who are members of four academies.

Klein G	ABDI
Kunkel H G	ABEI
Lederer E	FITa
Nossal G J V	ABHZ
Page I H	ABEI
Sela M	ABbi
Umezawa H	BFdl

Table 4: Newly elected members of the US
National Academy of Sciences who are on
the list of 1,000 most-cited contemporary
authors.

	Conney A H Costa E Cuatrecasas P Davis J O Eastman D E Gibson Q H Herzenberg L A Kochi J K McLafferty F W Miller J F A P Pastan I H Paul W E Shreffer D C	Pharmacology Neuropharmacology Biochemistry Physiology Physics Physiology Immunology Organometallic Chemistry Analytical Chemistry Immunology Biochemistry Immunology Genetics
	Miller J F A P	Immunology
		0,
	Steinberg D Sugimura T	Biochemistry Oncology
	Thomas E D Weissbach H	Oncology Molecular Biology
•		

citations as secondary authors than as primary authors. This was also the case for the physical, chemical, and life sciences disciplines already covered in previous essays.^{2,3} Futhermore, the authors in this study also published more cited papers as secondary authors.

Academy memberships are denoted by the letters in column H of Table 1. A key to these letter codes appears in Table 2. Only 86 of the 238 authors in this group hold memberships in national academies. Of these, the majority (50)

Table 5: Discipline averages for authors listed in this essay. A = number of authors on list. B = average number of citations received. C = average primary citations. D = average secondary citations. E = average number of cited papers. F = average papers as first author. G = average papers as secondary author. H = number of authors with academy memberships. I = number of Nobelists. J = average birth year.

Discipline	Α	B	С	D	Е	F	G	н	I	J
Hematology	22	3283	1083	2200	132	40	92	8	0	1926
Histology	7	3153	806	2347	110	29	81	2	0	1930
Immunology	128	4132	1126	3006	129	27	102	37	3	1930
Microbiology	17	3416	836	2580	148	29	119	7	1	1923
Physiology	35	3319	971	2348	105	27	78	17	2	1927
Virology	29	4069	1056	3013	108	22	86	15	1	1929

are members of one academy, 20 are members of two, and nine of three academies. Table 3 lists those seven scientists who are members of *four* academies. Taken as a group, the average age of academy members was 58 years, and 51 for nonmembers.

The US National Academy of Sciences (NAS) recently announced the election of 60 new members, 17 of whom appear on our list of 1,000 authors. They are shown in Table 4, including the disciplines to which they were assigned in this study.

Table 5 presents citation and authorship data averaged over the entire group of scientists within each discipline. The microbiologists have the highest average of cited papers per author (148), but they are the second smallest group of authors (17). They also are the oldest, with an average age of 59 years. Immunology is the largest group with 128 authors. It has the highest average of citations per author (4,132). Only the virologists also averaged more than 4,000 citations.

C.P. Leblond, McGill University, Montreal, Canada, was surprised to see only seven authors listed under his discipline of histology. He asserts, "More than any other group, histologists are responsible for the vast amount of new knowledge on fine structure provided by the electron microscope. It seems that the knowledge of cell organelles and tissue detail is one of the most important developments of modern science. Consciously or unconsciously, physiologists and biochemists have to refer to fine structure if they are to understand intracellular happenings."5

Leblond offers an explanation for the presumably small number of histologists identified in this study. He suggests that the findings of histologists are "taken for granted" soon after publication. Consequently, they quite often are not explicitly cited in later publications.⁵ This is a variation on the notion of "citation obliteration," a phenomenon I have discussed *ad infinitum*. However, it would be time consuming, though not impossible, to collect evidence to support the notion that this happens more often in histology than in other fields.

It may be that the average histology paper contains fewer references than, say, the average immunology paper. This has been the case for other fields that are not well represented in this list—plant sciences, for example.³ But a check of the Journal Citation Reports[®] (JCR[®]) volume of SCI shows that the average number of references per paper in the leading histology journals is not significantly different from journals in immunology.

I suspect that the problem is in field definition—histology is not a well-defined field. It is rather interesting that histochemistry has produced specialty journals, but none on histology *per se*. To make sure this was not peculiar to *SCI* or *Current Contents*[®] (*CC*[®]) coverage, we checked *Ulrich's International Periodicals Directory*.⁶ It lists more than 65 journals under "cytology and histology," but only one has the word "histology" in its title—Archivum Histologicum Japonicum. I therefore presume that the kind of research Leblond has in mind is reported in journals of cell biology or histochemistry. If so, why don't the histologists in our study view themselves as cell biologists? In the third part of this study, we identified 56 cell biologists.³ It is interesting that the NAS has a section for cell biology but not for histology. Perhaps it would have been appropriate to assign our group of histologists to that category.

When we calculate average citations per author in Table 5, you should keep in mind that we are dealing with multiauthored works. In this study, we have credited each author of a multiauthored paper with the *full* citation count. Derek J. de Solla Price, Yale University, proposed giving *proportional* credit to each author instead of equal credit.⁷ Thus, if a paper was written by two authors, each would get half the citations it received; three authors would get one-third each, and so on.

When we recalculated citations to multiauthored papers using Price's method, we found that 47 scientists listed here would not have made the list of 1,000 most-cited contemporary scientists: 19 from immunology, ten from physiology, seven from hematology, six from microbiology, three from virology, and two from histology.

Of course, we couldn't accurately determine who did the most important work on a multiauthored paper unless we could ask each research team "to tell the truth"—would the "real" author please stand up! T.C. Hsu, Texas Medical Center, Houston, suggested the possibility of assigning citations the way golf tournaments award prize money.⁸ That is, the first author would get full credit for all citations, the second would get half that number, the third would receive half again, and so on. But credit would be limited to the first four authors. Hsu clearly never expects to be a member of a team of high-energy physicists!

Fred Rapp, Hershey Medical Center, Pennsylvania State University, believes the golf tournament method would not work.⁹ He claims that in his own field of virology, the convention for ordering names is as follows: students and postdoctorates first, the senior member of the research group last, and everyone else-technicians, support staff, and drug and tissue suppliers-are placed in between. As you would expect, Rapp follows this convention. We identified 147 of his papers as having more than one coauthor. Of these, he appears last on 107, first on 27, and in between on only 13. Also, 90 of Rapp's papers were coauthored with one other person, and he is last on 71 of these. These are all in addition to ten other papers he wrote alone.

Rapp goes on to say, "It may vary from field to field, but in immunology, virology, microbiology, or the others under review in this essay, I would suspect [this ordering sequence] to be the case. You can pick up any journal you wish, look at the names of the people in Table 1 in this essay, and you'll find that most will be last on the papers. If the key person isn't first, he or she is going to be last, but not in between."⁹

Although there are no statistical data on the frequency of this practice, it's true that a large number of "senior" authors put their names last on many papers but not necessarily their best. Rapp notes that his name does come first on review papers.⁹ In fact, this is one of the reasons we were able to use first-author data for so long to identify most eminent scientists—they almost invariably write reviews or other "summary" papers on which they choose to be the first or only author. But there were important exceptions.

Until international standards for authorship are established and accepted by most leading journals, these proposals will remain futile and citation data will always have to be subjected to further review by peer groups. Citation data will remain, as before, *indicators* and not precise measurements of whatever one is trying to examine---eminence, importance, impact, and so on.

The next part of this essay will present citation and authorship data on 281 authors in the following life sciences disciplines: cardiology, endocrinology, gastroenterology, neuropharmacology, neuropharmacology, nuclear medicine, oncology, pathology, pharmacology, psychiatry, and surgery.

* * * * *

My thanks to Bella Teperov and Alfred Welljams-Dorof for their help in the preparation of this essay.

REFERENCES

- 1. Garfield E. The 1,000 contemporary scientists most-cited 1965-1978. Part 1. The basic list and introduction. Current Contents (41):5-14, 12 October 1981.

- 4. ----- Are the 1979 prizewinners of Nobel class? Essays of an information scientist. Philadelphia: ISI Press, 1981. Vol. 4. p. 609-17.
- 5. Leblond C P. Personal communication. 13 April 1982.
- 6. Ulrich's international periodicals directory. New York: Bowker, 1981. p. 185-7.
- 7. Price D J D. Letter to editor. (Multiple authorship.) Science 212:986, 1981.
- 8. Hsu T C. Personal communication. 22 March 1982.
- 9. Rapp F. Telephone communication. 7 April 1982.