Current Comments®

EUGENE GARFIELD

INSTITUTE FOR SCIENTIFIC INFORMATION® 3501 MARKET ST., PHILADELPHIA, PA 19104

The Role of Undergraduate Colleges in Research. Part 1. Highest Output, Most-Cited, and Highest Impact Institutions, 1981-1992

Number 23

June 7, 1993

Abstract

A citation analysis of research publications of 74 primarily liberal arts colleges, based on 14,510 ISI®indexed papers published and cited from 1981 through 1992, is presented. Part 1 of this essay identifies the highest output, most-cited, and highest impact colleges in all fields of science. Separate impact rankings in the life sciences, agriculture and biology, and clinical medicine are also included. Part 2 will identify the highest impact colleges in the physical and chemical sciences as well as engineering and technology. In addition, their highest impact papers will be identified.

Introduction

In April I participated in a meeting cosponsored by the Council on Undergraduate Research (CUR) and the National Institutes of Health (NIH) entitled "Dialogue with NIH and NSF."¹ Founded in 1978, CUR is a nonprofit association of 600 primarily undergraduate colleges and universities with 2,000 member teachers, administrators, and researchers. Its purpose is to promote and provide information on scientific research at the nation's primarily liberal arts colleges.

It has been several years since we discussed in *Current Contents* (CC) the contribution of undergraduate colleges to research.² And that essay focused on their role as a major "pipeline" of the nation's future science graduate and doctoral students. However, the CUR meeting gave us the opportunity to do something different—that is, to provide a citationist perspective on scientific research conducted at undergraduate colleges.

The data we prepared demonstrated that liberal arts colleges have a significant impact as research institutions. This aspect of their overall contribution to the nation's science base has not been appreciated and deserves wider recognition.

Undergraduate Colleges: A Key Pipeline of Research Scientists

It has been well documented that liberal arts colleges are an important training ground for students who go on to earn graduate and doctoral science degrees. Indeed, certain select liberal arts colleges have produced a disproportionate share of science graduates and PhDs, compared with larger comprehensive universities having more extensive science curricula, betterequipped labs, and far greater levels of research funding.

These findings were extensively documented in the 1985 and 1987 Oberlin reports on the role of liberal arts colleges in educating America's scientists.^{3,4} The reports focused on 50 so-called "science active" colleges. They demonstrated that these smaller, primarily undergraduate institutions ranked among the leaders on a variety of criteria—baccalaureates who went on to earn PhDs in mathematics, physical sciences, life sciences, and other fields; membership in the National Academy of **Table 1:** Primarily undergraduate liberal arts colleges included in the study. Asterisks indicate those included in the original Oberlin Group reports (see references 3 and 4).

*Albion Coll. Albion. MI Allegheny Coll. Meadville, PA *Aima Coll Alma, MI *Amherst Coll Amherst, MA *Antioch Coll. Yellow Springs, OH Augustana Coll. Rock Island, IL *Barnard Coll. New York, NY *Bates Coll. Lewiston, ME *Beloit Coll Beloit. WI Birmingham Southern Coll. Birmingham, AL *Bowdoin Coll. Brunswick, ME *Bryn Mawr Coll. Bryn Mawr, PA *Bucknell Univ. Lewisburg, PA Calvin Coll. Grand Rapids, MI *Carleton Coll. Northfield, MN Colby Coll. Waterville, ME *Colgate Univ. Hamilton, NY Coll. Charleston Charleston, SC *Coll. Holy Cross Worcester, MA Coll. William & Mary Williamsburg, VA *Coll. Wooster Wooster, OH *Colorado Coll. Colorado Springs, CO Connecticut Coll. New London, CT *Davidson Coll. Davidson, NC *Denison Univ. Granville, OH

*DePauw Univ. Greencastle, IN Dickinson Coll. Carlisle, PA *Earlham Coll Richmond, IN Fort Lewis Coll. Durango, CO *Franklin & Marshall Coll. Lancaster, PA *Grinnell Coll Grinnell, IA *Hamilton Coll. Clinton, NY *Hampton Univ. Hampton, VA *Harvey Mudd Coll. Claremont, CA *Haverford Coll. Haverford, PA Hendrix Coll. Conway, AR Hobart & Wm. Smith Coll. Geneva, NY *Hope Coll. Holland MI Ithaca Coll. Ithaca, NY Juniata Coll. Huntingdon, PA *Kalamazoo Coll. Kalamazoo, MI *Kenvon Coll. Gambier, OH Knox Coll. Galesburg, IL *Lafavette Coll. Easton, PA Lewis & Clark Coll. Portland, OR Luther Coll. Decorah, IA Lycoming Coll. Williamsport, PA *Macalester Coll. St. Paul. MN *Manhattan Coll. Bronx, NY Mary Washington Coll. Fredericksburg, VA

*Middlebury Coll. Middlebury, VT Montclair State Coll. Upper Montclair, NJ *Mt. Holvoke Coll. South Hadley, MA *Oberlin Coll. Oberlin, OH *Occidental Coll Los Angeles, CA *Ohio Weslevan Univ. Delaware, OH *Pomona Coll. Claremont, CA *Reed Coll Portland OR Rhodes Coll. Memphis, TN Skidmore Coll. Saratoga Springs, NY *Smith Coll. Northampton, MA *St. Olaf Coll. Northfield, MN *Swarthmore Coll. Swarthmore, PA *Trinity Coll. Hartford, CT *Union Coll. Schenectady, NY Ursinus Coll. Collegeville, PA *Vassar Coll. Poughkeepsie, NY *Wabash Coll. Crawfordsville, IN *Welleslev Coll. Wellesley, MA *Wesleyan Univ. Middletown, CT Westmont Coll. Santa Barbara, CA *Wheaton Coll. Wheaton, IL *Whitman Coll. Walla Walla, WA *Williams Coll. Williamstown, MA

Sciences; NSF grantees; the 1,000 mostcited scientists of 1965-1978;⁵ and so on.

More recently, the 1991 Project Kaleidoscope analysis has confirmed these findings and extended them beyond the 50 institutions in the Oberlin Group.⁶ Supported by the NSF and private foundations, the analysis ranked US institutions both by absolute number and proportion of graduates receiving bachelor's degrees in a variety of scientific fields. The results consistently showed that liberal arts colleges ranked high in producing a substantial number of research scientists.

The Oberlin and Kaleidoscope reports, as well as other published studies,^{7,8} provide a wealth of quantitative and qualitative data on the *pipeline* value of undergraduate colleges to US science. Typically, this success is attributed to the students' hands-on experience in actual research projects under faculty mentors. As an important source of the nation's future research professionals, select liberal arts colleges ought to receive NSF and NIH funding at a *size-adjusted* level at least comparable to the leading comprehensive research universities.

But there are other critical roles that colleges play in US research. For example, liberal arts colleges also contribute to advances in scientific knowledge. While the faculty are committed to teaching, they also do research and publish review articles. As the data presented below indicate, select liberal arts colleges have a substantial impact in the international scientific literature.

The Impact of Undergraduate Colleges on Research

ISI®'s databases are uniquely suited to indicate this impact in quantitative terms. They include bibliographic information on about 15 million papers published in thousands of journals since 1945, and more than 215 million references they cited. From these data, one can derive rankings of institutions in terms of number of papers, citations, average citations per paper, proportion of papers actually cited, and so on. Keep in mind that the data cover all fields of science as well as the social sciences and the arts and humanities. This study focuses on the sciences, but it should be stressed that liberal arts colleges no doubt have even greater impact in the social sciences and humanities.

The following analysis is based on 74 undergraduate institutions shown in Table 1. All of the 50 institutions participating in the Oberlin Report have been included and are indicated by asterisks. But the Project Kaleidoscope report shows that many other liberal arts colleges rank high in terms of producing science graduates. Thus, 24 additional institutions that were not among the original Oberlin Group have also been included. They were selected on the basis of their CUR membership-each had at least five individual members. Many of them have appeared in the Project Kaleidoscope rankings of leading producers of science graduates in various fields.

In the 1981-1992 Science Citation Index® (SCI®) database, these 74 colleges produced 14,500 papers which received about 90,000 citations. Thus, dividing numbers of citations by papers, the average 12year impact for the CUR colleges was 6.2.

Highest Output and Most-Cited Colleges

Table 2 lists 25 institutions that produced at least 200 papers. The College of William & Mary had the highest output with about 1,500 papers. Wesleyan University is the only other institution that produced over 1,000 papers.

It is interesting that the College of William & Mary was *not* among the original Oberlin Group institutions. The only other non-Oberlin Group institution on this list is Ithaca College, with 287 papers.

Table 3 lists 25 institutions that received at least 1,300 citations to their 1981-1992

 Table 2: Highest output liberal arts colleges, 1981-1992
 SCI[®].

 Table 3: Most-cited liberal arts colleges, 1981-1992
 SCI[®].

1081-02 1081-02 12Vr

		1981-92	1981-92	12-Yr.
Rank	Institution	Papers	Cites	Impact
1	Coll Wm & Mary	1471	11 326	77
2	Weslevan Univ.	1003	7688	77
3	Wellesley Coll.	476	5212	11.0
4.	Amherst Coll.	450	3683	8.2
5.	Lafayette Coll.	432	1908	4,4
6.	Bryn Mawr Coll.	429	2565	6.0
7.	Williams Coll.	415	2528	6.1
8.	Bucknell Univ.	402	1513	3.8
9.	Vassar Coll.	383	2374	6.2
10.	Smith Coll.	361	2624	7.3
11.	Swarthmore Coll.	340	1857	5.5
12.	Colgate Univ.	338	1883	5.6
13.	Occidental Coll.	332	2174	6.6
14.	Oberlin Coll.	326	1729	5.3
15.	Franklin & Marshal	1 321	1910	6.0
16.	Trinity Coll.	311	1390	4.5
17.	Manhattan Coll.	307	1936	6.3
18.	Pomona Coll.	293	2538	8.7
19.	Ithaca Coll.	287	2912	10.2
20.	Harvey Mudd Coll.	277	1031	3.7
21.	Hope Coll.	271	1887	7.0
22.	Reed Coll.	263	1750	6.7
23.	Barnard Coll.	235	2093	8.9
24.	Coll. Holy Cross	231	1339	5.8
25.	Mt. Holyoke Coll.	222	1543	7.0

papers. Not surprisingly, the College of
William & Mary ranks first with over
11,300 citations. Typically, lists of institu-
tions ranked by output and total citations
tend to overlap significantly. For example,
23 of the 25 most-cited colleges also ranked
among the highest output institutions. The
two exceptions are Haverford College (2,094
citations) and Middlebury College (1,319).

Highest Impact Colleges: All Science Fields

The highest impact colleges are shown in Table 4, including 27 institutions with a 12-year impact of at least 5.5. The list includes only those institutions that produced at least 100 papers. This effectively "censors" the occasional citation "outlier"—an institution that achieves high impact based on a few highly cited papers. By setting an arbitrary threshold of 100 papers, the list

		1/01-78	1701-74	*****
Ran	k Institution	Cites	Papers	Impact
ł.	Coil. Wm. & Mary	11,326	1471	7.7
2.	Wesleyan Univ.	7688	1003	7.7
3.	Wellesley Coll.	5212	476	11.0
4.	Amherst Coll.	3683	450	8.2
5.	Ithaca Coll.	2912	287	10.2
6.	Smith Coll.	2624	361	7.3
7.	Bryn Mawr Coll.	2565	429	6.0
8.	Pomona Coll.	2538	293	8.7
9.	Williams Coll.	2528	415	6.1
10.	Vassar Coll.	2374	383	6.2
11.	Occidental Coll.	2174	332	6.6
12.	Haverford Coll.	2094	187	11.2
13.	Barnard Coll.	2093	235	8.9
14.	Manhattan Coll.	1936	307	6.3
15.	Franklin & Marshal	1 1910	321	6.0
16.	Hope Coll.	1887	271	7.0
17.	Colgate Univ.	1883	338	5.6
18.	Swarthmore Coll.	1857	340	5.5
19.	Reed Coll.	1750	263	6.7
20.	Oberlin Coll.	1729	326	5.3
21.	Mt. Holyoke Coll.	1543	222	7.0
22.	Bucknell Univ.	1513	402	3.8
23.	Trinity Coll.	1390	311	4.5
24.	Coll. Holy Cross	1339	231	5.8
25.	Middlebury Coll.	1319	178	7.4

includes institutions that were consistently productive over the 12-year period.

The table also shows the average impact of all 74 CUR institutions combined as well as the so-called "world average"—that is, the average impact for the entire SCI^{\oplus} file. They are shown in italics.

It should be noted that the CUR average impact of 6.2 is higher than the world average of 5.5. That is, the average CUR paper was cited more frequently than the average SCI paper. This alone is an interesting indicator of the contribution of liberal arts colleges to research.

In fact, all 27 institutions met or exceeded the world average impact. And two colleges *doubled* the world average—Haverford (11.2) and Wellesley (11.0). Clearly, these primarily undergraduate institutions make a significant contribution to research. The number of their papers may be small compared to the comprehensive research Table 4: Highest impact liberal arts colleges in all fields of science, 1981-1992 SCI*, which published at least 100 papers. Table 5: Highest impact liberal arts colleges in the life sciences, 1981-1992 SCI*, which published at least 50 papers.

12-Yr.

Impact

Rank Institution

1981-92

Citations

1981-92

Papers

	1	2-Yr.	1981-92	2 1981-92
Rank	Institution I	mpact	t Paper	s Citations
1 Ha	werford Coll	11.2	187	2094
2 W	elleslev Coll	11.0	476	5212
3. lth	aca Coll	10.2	287	2912
4 Oh	io Weslevan	9.5	108	1021
5. Ba	rnard Coll.	8.9	235	2093
6. Po	mona Coll.	8.7	293	2538
7. Ar	nherst Coll.	8.2	450	3683
8. Co	II. Wm. & Mary	7.7	1471	11,326
W	esleyan Univ.	7.7	1003	7688
10. Mi	ddlebury Coll.	7.4	178	1319
11. Sn	hith Coll.	7.3	361	2624
12. Ho	ope Coll.	7.0	271	1887
M	. Holyoke Coll.	7.0	222	1543
14. Re	ed Coll.	6.7	263	1750
15. Oc	cidental Coll.	6.6	332	2174
16. Ma	anhattan Coll.	6.3	307	1936
17. Va	ssar Coll.	6.2	383	2374
CU	/R AVG.	6.2	14,510	89,892
18. W	illiams Coll.	6.1	415	2528
19. Br	yn Mawr Coll.	6.0	429	2565
Fra	anklin & Marsha	11 6.0	321	1910
21. Co	lorado Coll.	5.9	190	1112
22. Co	II. Holy Cross	5.8	231	1339
23. Co	lgate Univ.	5.6	338	1883
24. Co	II. Wooster	5.1	154	777
25. Ba	tes Coll.	5.5	118	643
Ca	rleton Coll.	5.5	155	844
Sw	arthmore Coll.	5.5	340	1857
We	ORLD AVG.	5.5	7,718,263	42,280,424

1. Wellesley Coll. 16.0 242 3861 2. Pomona Coll. 12.3 140 1716 2693 3. Amherst Coll. 112 240 4. Barnard Coll. 11.1 126 1393 5. Mt. Holyoke Coll. 9.6 90 860 9.1 72 655 6. Oberlin Coll. 7. Williams Coll. 8.9 1435 161 WORLD AVG. 8.2 3,404,992 27,758,805 8. Wesleyan Univ. 8.1 4320 532 9. Coll, Wooster 7.8 61 477 Ithaca Coll. 7.8 474 61 Smith Coll. 7.8 136 1064 7.4 1153 12. Hope Coll. 156 Reed Coll. 7.4 1214 165 14. Colgate Univ. 7.3 100 732 7.2 5449 39.438 CUR AVG. 15. Middlebury Coll. 7.1 54 385 Swarthmore Coll. 7.1 132 940 1043 17. Occidental Coll. 6.8 154 18. Vassar Coll. 6.6 224 1468 115 700 19. Franklin & Marshall 6.1 462 20. Harvey Mudd Coll. 5.9 79 21. Haverford Coll. 5.8 55 321 22. Bowdoin Coll. 5.7 54 305 23. Coll. Wm. & Mary 5.5 225 1227 24. Bryn Mawr Coll. 5.1 939 183 Colby Coll. 5.1 74 375

universities. But their impact equals or exceeds the average citation frequency of all *SCI* papers.

Keep in mind that the average impact of US papers is higher than the world average. Thus, the CUR average may not compare as favorably against it as the world average, and fewer colleges may equal or exceed the US average.

The data shown here are for all of science as a whole. Of course, certain liberal arts colleges may specialize or excel in a particular research area, such as the life sciences or chemistry or engineering. Thus, different sets of colleges might be identified in field-specific impact rankings. This essay presents impact rankings in the life sciences, agriculture and biology, and clinical medicine. In part 2, rankings in the physical and chemical sciences as well as engineering and technology will be presented. In addition, the most-cited papers from the liberal arts colleges will be examined in part 2.

These field categories are defined by the journal groupings in *Current Contents®*. These groupings have some redundancy—i.e., overlap in journal coverage. For example, the *Journal of the American Chemical Society* is covered in two editions of *CC®*—the physical/chemical sciences as well as the life sciences. However, this overlap is consistent for all institutions in the database.

Table 6: Highest impact liberal arts colleges in the agricultural and biological sciences, 1981-1992 SCI[®], which published at least 50 papers.

Rank Institution	12-Yr. Impac	1981-9 t Pape	2 1981-92 rs Citations
1. Smith Coll.	10.9	58	634
2. Reed Coll.	10.7	76	816
3. Manhattan Col	1. 9.9	139	1381
4. Swarthmore C	oll. 8.1	91	737
5. Occidental Col	il. 8.0	181	1445
6. Barnard Coll.	7.9	49	389
7. Williams Coll.	7.5	84	628
8. Oberlin Coll.	6.9	82	562
9. Pomona Coli.	6.3	64	402
10. Wesleyan Univ	6.2	86	530
11. Colgate Univ.	5.8	61	352
12. Connecticut C	oll. 5.7	77	435
13. Amherst Coll.	5.6	55	308
14. Coll. Wm. & N	Aary 5.5	499	2740
CUR AVG.	5.3	3655	19,452
15. Franklin & Ma	rshall 5.2	69	358
16. Mt. Holyoke C	oli. 5.0	64	318
17. Wellesley Coll	. 4.7	62	293
WORLD AVG.	4.7	1,122,706	5,264,385
18. Bucknell Univ	. 4.4	101	441
Colby Coli.	4.4	51	223
Colorado Coll.	4.4	62	275
21. Vassar Coll.	4.1	100	413
22. Ithaca Coll.	3.8	57	214
23. Lafayette Coll	. 3.6	164	597
24. Bowdoin Coll.	3.2	52	165
25. Bryn Mawr Co	oll. 2.4	65	158

Impact Rankings in the Life Sciences

Table 5 includes 25 institutions that produced at least 50 life sciences papers and achieved an impact of at least 5.0.

The average CUR impact in the life sciences (7.2) is less than the world average (8.2). This field includes molecular biology, genetics, and many other specialties involving sophisticated laboratories and equipment. Many of the smaller liberal arts colleges may not have the requisite facilities and are thus underrepresented in these high impact specialties. But in all other fields, the CUR average impact is higher than the world average, as will be seen.

Fourteen institutions exceeded the CUR average and, of these, seven also exceeded the world average. Four colleges had imTable 7: Highest impact liberal arts colleges in clinical medicine, 1981-1992 SCI®, which published at least 15 papers.

Raz	nk Institution	12.Yr. Impaci	1981-9 Paper:	2 1981-92 s Citations
۱.	Wellesley Coll.	9.5	56	531
2.	Smith Coll.	8.5	19	162
3.	Barnard Coll.	5.4	29	156
	CUR AVG.	4.9	585	2882
4.	Bryn Mawr Coll.	4.8	43	206
5.	Trinity Coll.	4.4	43	190
	WORLD AVG.	4.4]	,932,143	8,560,837
6.	Pomona Coll.	4.3	16	68
7.	Wesleyan Univ.	4.1	15	62
8.	Vassar Coll.	3.4	46	158
9.	Coll. Wm. & Mary	y 2.3	17	39
	Wheaton Coll.	2.3	15	35
11.	Ithaca Coll.	1.3	32	43

pacts greater than 10.0—Wellesley (16.0), Pomona (12.3), Amherst (11.2), and Barnard (11.1).

Impact Rankings in Agricultural and Biological Sciences

Table 6 shows 25 institutions that produced at least 50 papers in the agricultural and biological sciences with an impact of 2.4. Following the CC^{\circledast} journal groupings, the agricultural and biological sciences include agronomy, plant sciences, aquatic, and environmental science.

The impact of the average CUR paper in this field (5.3) is higher than the world average (4.7). And 17 institutions met or exceeded the world average. The impact of three colleges was double the world average.—Smith (10.9), Reed (10.7), and Manhattan College (9.9).

Impact Rankings in Clinical Medicine

Only 11 liberal arts colleges produced at least 15 papers in clinical medicine, as shown in Table 7. This should not be surprising because clinical research typically requires the facilities of a medical school or teaching hospital. Very few of the undergraduate colleges in this analysis are affiliated with a medical school or hospital. Thus, the institutions shown here no doubt were involved in collaborative clinical studies with medical universities. Indeed, collaboration with large research universities is probably a common feature of research at liberal arts colleges. This will be illustrated when we examine their most-cited papers in part 2 of this essay.

It is interesting that the CUR average impact in clinical medicine (4.9) is still higher than the world average (4.4). And five colleges equaled or exceeded the world average. Of these, the impact of Wellesley College (9.5) was double the world average.

Keep in mind that we are dealing with comparatively small numbers of papers here. For example, Wesleyan and Wheaton each produced only 15 clinical medicine papers. At this level, just one or a few highly cited papers can significantly influence an institution's overall impact.

Conclusion

In conclusion, for the group of 74 CUR member institutions, the data show that se-

lect liberal arts colleges make a significant contribution to US research. Over a third of these institutions exceeded the world average impact in all fields of science. And with the exception of the life sciences, the average CUR paper was cited more frequently than the world average in agricultural and biological sciences as well as clinical medicine. Several colleges even doubled the world averages—Manhattan. Reed, Smith, and Wellesley.

In part 2, we'll identify the highest impact liberal arts colleges in the physical and chemical sciences as well as engineering and technology. In addition, their mostcited papers from 1981 to 1992 will be presented. As noted earlier, these high impact papers typically are collaborative research efforts involving large research universities. Thus, a separate list of high impact papers *solely* from the liberal arts colleges will also be presented.

My thanks to Al Welljams-Dorof for his help in the preparation of this essay.

© ISI 1993

REFERENCES

- Garfield E. The impact of undergraduate colleges on US research: a citationist perspective, 1981-1992. Dialogue with NIH and NSF. Council on Undergraduate Research & National Institutes of Health. Bethesda. MD. 16 April 1993.
- ------, Research and dedicated mentors nourish science careers at undergraduate institutions. Current Contents (33):3-9, 17 August 1987. (Reprinted in: Essays of an information scientist: peer review, refereeing, fraud, and other essays. Philadelphia: ISI Press, 1989. Vol. 10, p. 229-35.)
- 3. Carrier S C & Davis-Van Atta D. Maintaining America's scientific productivity: the necessity of the liberal arts colleges. Oberlin, OH: Oberlin College, 1987. 140 p.
- 4. Davis-Van Atta D, Carrier S C & Frankfort F. Educating America's scientists: the role of the research colleges. Oberlin, OH: Oberlin College, 1985. 101 p.
- Garfield E. The 1,000 contemporary scientists most-cited 1965-1978. Part 1. The basic list and introduction. *Current Contents* (41):5-14, 12 October 1981. (Reprinted in: *Op. cit.*, 1983. Vol. 5. p. 269-78.)
- Narum J L, ed. What works: building natural science communities. A plan for strengthening undergraduate science and mathematics. Volume 2. Washington, DC: Project Kaleidoscope, 1991. 142 p.
- 7. Fuller C H. Ph.D. recipients: where did they go to college? Change 18:42-51, 1986.
- Tidball M E. Baccalaureate origins of recent natural science doctorates. J. High. Educ. 57:606-20, 1986.