We began with impure preparations of cholecystokinin and secretin because we had been using them in recent experiments concerned with the control of insulin release during food intake elicited by 2-deoxy-D-glucose. The first series of experiments worked. Cholecystokinin inhibited food intake, but secretin did not.

We believe that this paper is cited frequently for three reasons: (1) It was the first report of a significant inhibition of food intake with a synthetically pure gut peptide, the COOH-terminal octapeptide of cholecystokinin, CCK-8; (2) It showed how the interpretation of this effect required experiments designed to eliminate the possibility that the inhibition was due to toxic effects or to interference with the oral movements required for eating; and (3) It proposed five criteria that had to be satisfied before the inhibition of food intake by administration of a hormone could be considered a physiological function of the endogenous hormone.

Much of the work of the past 20 years on the satiating effect of cholecystokinin and other gut hormones has been pursued within the context of the types of experiments and criteria presented in our paper. Demonstrating the physiological function of cholecystokinin proved more arduous than we imagined when we wrote this paper. It depended on the development of specific and potent antagonists, and it was only a year ago that we judged the evidence to be sufficient to conclude that the satiating effect of endogenous cholecystokinin was proven.

Gibbs and Smith remained at Cornell and have been constant collaborators during the past 20 years on the investigation of cholecystokinin and bombesin-like peptides in the control of meal size in the rat. Young won a prize for original research from Cornell University Medical College for his contribution to this work. After a psychiatric residency at Washington University in St. Louis, he returned to Cornell and is now an associate professor of psychiatry doing research on mood disorders in the elderly.