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This letter describes a Monte Carlo computer algo-
rithm meant to simulate the growth of an object by 
the accretion of a diffusing substance. In the algo-
rithm a random walker moves on a lattice until it 
encounters a seed-cluster of previously occupied 
lattice sites. The walker then becomes part of this 
cluster at the point of contact. This process, when 
repeated, makes a fractal object whose fractal di-
mension D is about 1.7 in two dimensions. [The 
SCI® indicates that this paper has been cited in 
more than 1,130 publications.] 

Fractal Growth: A 
Continuing Mystery 
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In 1978 a graduate student named Steve 

Forrest showed me an intriguing electron mi-
crograph and asked, "Do you think this is a 
fractal?" In those days the notion that the math-
ematical scale invariance known as fractal sym-
metry might occur in natural phenomena was 
just being popularized by Benoit Mandelbrot.1 

Steve's query came as a response to a talk I gave 
at the University of Michigan introducing fractals. 
His micrograph, made as part of his PhD re-
search, showed aggregated colloidal iron of the 
kind used in magnetic recording. The intricate, 
wispy branches of Steve's aggregates did seem 
to have the hallmark feature of geometrically 
constructed fractals: The structure of the whole 
was reflected in each part We decided to look 
for quantitative evidence of fractal structures in 
the aggregates. Several months later we had 
amassed suggestive, but far from compelling, 
evidence. The main missing ingredient was a 
model: We had no idea why these colloidal iron 
particles might form a fractal structure. 

We felt this weakness in our picture acutely 
as we discussed the aggregates with my col-
league Len Sander. In an effort to make some 
link between the intricate structure and its ori-
gins, I worked up several order-of-magnitude 
estimates to give a quantitative idea of how the 
aggregates formed. These yielded a surprise: 

The aggregating particles seemed to arrive in 
the aggregation region one at a time and seemed 
to have no further motion than thermal Brown-
ian motion when they stuck together. Could 
these two facts alone explain the fractal struc-
ture? It seemed impossible, yet a similar phe-
nomenon happened in a different domain. Den-
dritic crystals growing in a super-cooled liquid 
also develop an increasingly subdivided struc-
ture—like that of snowflakes. This structure was 
also known to be controlled by diffusion, like the 
Brownian motion of our iron particles. 

Len and I immediately saw that if these two 
elements were the essential ones to explain 
fractal growth, it would be very simple to devise 
a test. The two elements could easily be simu-
lated in a computer by allowing a cluster of 
connected particles to grow by the successive 
addition of randomly moving particles. We were 
half sure that when we implemented this pro-
gram the resulting structures would be mere 
amorphous blobs of particles. But to our delight 
the structure that emerged from Len's program 
was the intricate branched pattern now known 
as diffusion-limited aggregation (DLA). 

DLA is now recognized as a widespread, 
important physical process. In phenomena as 
diverse as electrodeposition or the invasion of 
air into liquid-soaked rock, the quantitative fractal 
properties of the DLA computer model have 
been reported.2 Generalizations of OLA have 
been devised to explain the electric breakdown 
of a highly charged insulator, and for the 
branched structure of trees, blood vessels, root 
systems, etc.3,4 Except for the random walk, 
DLA is perhaps the simplest process that makes 
a fractal structure. As such, it serves as a 
paradigm for more complicated processes like 
turbulence or avalanches, where fractal-like 
structures are believed to occur.3'4 But despite 
this simplicity, the origins of the fractal struc-
ture of DLA remain a mystery. To explain this 
symmetry mathematically is one of the funda-
mental unsolved problems of statistical phys-
ics.5 

For all its ramifications, DLA turned out not to 
account for the aggregation phenomenon that 
inspired it. This aggregation was soon found6.7 

to be a separate process, with widespread impli-
cations of its own.8 
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