Improved spectrophotometric equations for the determination of chlorophylls and carotenoids in seawater were formulated based on the isolation of pigments by column chromatography. The SCI® indicates that this paper has been cited in more than 255 publications.

How Much Phytoplankton in the Oceans?

Timothy R. Parsons
Department of Oceanography
University of British Columbia
Vancouver, British Columbia
V6T 1W5
Canada*

This paper was an attempt to improve the coefficients used in equations for the determination of marine algal pigments as originally described in 1952 by F.A. Richards with T.G. Thompson.¹ The frequent citing of the paper does not indicate any great advance in science, but rather it represents an improvement in a very popular technique for determining the standing stock of phytoplankton in the sea through chlorophyll analysis.

Subsequently, the method was further improved by a special working group of the Scientific Committee on Oceanic Research (SCOR).² At about the same time, a new technique in pigment analyses resulted from the use of a fluorometer, which is about 10 times more sensitive than the spectrophotometric technique.³ Finally, the use of reverse-phase high-performance liquid chromatography⁴ probably represents the best present-day method for algal pigment analysis, since in this method individual pigments are separated out, which is not the case in the earlier spectrophotometric and fluorometric methods.

With so many modifications in methodology occurring within a relatively short time span, one has to ask why our paper has been cited so often. I believe the answer to this lies in the fact that it is the method given in A Practical Handbook of Seawater Analysis,⁵ which is a frequently cited text. Although this book also gives the Richards with Thompson equations and the SCOR/UNESCO equations for pigment analysis, the former are considered inaccurate and the latter require the more difficult setting of a spectrophotometer at 663 nm. The former wavelength is generally not marked as a calibration on spectrophotometers and has to be guessed to be between 660 and 665 nm. (Thus a small gain in the sensitivity of this method results in some loss of accuracy.)


*Received September 6, 1990