How Many Nucleotide Substitutions Actually Took Place?

Thomas H. Jukes
Department of Biophysics and Medical Physics
University of California
Berkeley, CA 94720

February 16, 1990

In 1965 I met Charles R. Cantor, who was 23 years old and was a graduate student in chemistry at the University of California. We started talking about molecular evolution and about comparing the polypeptide chains of homologous proteins. Charles said that a computer program should be written for searching for evidence of this, but that he was frightfully busy working on his PhD thesis, and he had no time for this. The next day he had written the program, and in 1966 we wrote two notes on its use. We resolved to write a textbook on molecular evolution together, and Charles left for Columbia University as an assistant professor in 1966. I received a request from Hamish N. Munro for a chapter in his forthcoming volume III of Mammalian Protein Metabolism. He asked us to write on "Evolution of protein molecules," and we sent him the manuscript that was to have been prepared for the book. It was published in Munro's book in 1969, and the article has 110 printed pages. Citations to our long article relate only to the following short passage in it, written by Charles.

It can be shown that the mean number of base differences at a single position on the mRNA, μ, is related to the observed fraction of residues with single base differences, p, by the expression

$$\mu = \frac{3}{4} \ln \frac{1}{p}$$

(1)

The equation (1) assumes that all single base changes (nucleotide substitutions) are equally probable and that the frequencies of all four bases in DNA are the same. This gives me the chance to point out that (1) should be called the Cantor equation, not Jukes and Cantor. The formula came into wide use when rapid DNA and RNA sequencing became available. From then on molecular biologists became interested in comparing sequences of homologous genes to study evolution. For example, a portion of the two sequences of human α and β hemoglobin genes is

$$\alpha \text{ gene: ACCAACGTCAAGGGCCG}$$

$$\beta \text{ gene: TCTGCGGTATCTGCCC}$$

showing 12 nucleotide substitutions (40 percent). The mean number of substitutions that has actually occurred is greater than 12, because of revertants, such as A to C to A, and multiple changes, such as A to C to G. Equation (1) corrects for these, and the probable total number of substitutions is 17 (57 percent), not 40 percent.

The two genes diverged from a common ancestor at least 4×10^9 years ago. Sharks go back in the fossil record for 400 million years and sharks have α and β hemoglobin genes (but lampreys do not). The equation tells us that the average rate of substitution per year per nucleotide site is about $0.57 \div (4 \times 10^9) = 1.4 \times 10^{-10}$. We carry with us in every red blood cell the evidence that we are in a line of descent from an ancestor who lived 400 million years ago.

An example of the use of equation (1) is in the article by C.L. Manske and D.J. Chapman. These authors used the equation to correct their comparisons of 55 ribosomal RNA sequences for revertants, allelic and convergent mutations. See their references 2 and 3 for similar usage.

Charles returned to Berkeley in 1989 to direct the human genome project at the Lawrence Berkeley Laboratory.