Erythroenzymopathies: 1960s in Retrospect

Donald E. Paglia
Department of Pathology
UCLA School of Medicine
Center for the Health Sciences
Los Angeles, CA 90024-1732

November 14, 1988

Most will recall the decade of the 1960s as a period of sociopolitical ferment, but it was no less so in our rather isolated and arcane world of erythrocyte metabolism. I had joined Bill Valentine's group in late 1964 as a postdoctoral research fellow after completing my residency in anatomic pathology at the University of California, Los Angeles. He and his colleagues, Kouichi R. (Corky) Tanaka and Shiro Miwa, had already established pyruvate kinase deficiency as the paradigm for anemias secondary to genetically induced defects of anaerobic glycolysis. In quick succession, recognition of deficiencies of triosephosphate isomerase, hexokinase and glucosephosphate isomerase followed, and it became clear that a heterogeneous group of enzymopathies would likely emerge from those disorders traditionally grouped as "congenital nonspherocytic hemolytic anemias." Logic dictated that we expand our armamentarium of assays to include as many enzymes as possible that might be essential to normal red-cell metabolism and longevity. The importance of hexosemonophosphate shunt activity to maintenance of a pool of reducing energy in circulating erythrocytes had already been amply demonstrated by the deleterious effects of glucose-6-phosphate dehydrogenase deficiency. A number of workers in our field recognized that similar defects in enzymes mediating glutathione synthesis and cycling might reasonably be induced by chronic or acute episodic hemolysis as a consequence of ambient or drug-induced oxidative stresses.

The seminal work of Gordon C. Mills at the University of Texas focused our attention on glutathione peroxidase specifically, and that was reinforced by an important study by Gerald Cohen and Paul Hochstein indicating that this peroxidase (rather than catalase) was the primary pathway for hydrogen peroxide detoxification in erythrocytes under physiological conditions. The quantitative assay we developed was essentially a modification of one devised by Mills that relied on periodic assays of residual glutathione after prolonged incubations. Valentine suggested that we might be able to develop a direct spectrophotometric assay by linking the peroxidase reaction to glutathione reductase rather than measuring residual substrate. This approach had been tried previously but was associated with unacceptable high blank activities because of the effects of peroxide on hemoglobin. The key to success was pretreatment of the hemolysate with Drabkin's reagent to produce stable cyanmethemoglobin, eliminating methemoglobin-reductase-mediated (or nonenzymatic) oxidation of NADPH. This system had the added advantage of recycling oxidized glutathione immediately back to the reduced form, thereby maintaining a constant concentration of substrate and allowing accurate kinetic studies to be performed. The procedure was simple and reliable and provided a quantitative assay that could be followed in real time by monitoring the conversion of NADPH to NADP with a recording spectrophotometer. The method was quickly adopted by others and continues to be used with various modifications, thus likely accounting for its citation frequency.

To date, no defects in glutathione peroxidase have been unequivocally incriminated in the pathogenesis of hemolytic syndromes, although several instances of partial deficiency have been reported in patients with anemias of unknown etiology. This association may be coincidental, since there is a large range of ethnic variation in the erythrocyte enzyme. Ironically, a recent study by G.F. Gaetani et al. provides strong evidence to dispel the traditional view of the relative roles of catalase and glutathione peroxidase in peroxide detoxification established by the Cohen and Hochstein report.

[Editor's note: In Current Contents (3):15, 16 January 1989, part of a letter from D.E. Paglia was published. This letter provided additional information about the role of this Classic paper in Professor Paglia's very interesting career.]


