Mechanisms of Ecological Succession

Joseph H. Connell
Department of Biological Sciences
University of California
Santa Barbara, CA 93106

and

Ralph O. Slatyer
Research School of Biological Sciences
Australian National University
Canberra, ACT

Australia

June 26, 1989

This paper originated in the meeting and exchange of ideas between two people with quite different viewpoints. In 1973 Ralph O. Slatyer arrived from Australia to spend his sabbatical leave with Joseph H. Connell and his colleagues in California. Our scientific backgrounds were quite different. Slatyer was a plant physiologist whose background included micrometeorology and soil science, and who had worked extensively on plant responses to environmental factors. Connell had studied the ecology of marine invertebrates and trees. At that time Slatyer had decided to shift into ecology and so had come to spend part of a year with our group of ecologists at Santa Barbara.

This turned out to be a stimulating experience for both parties. Slatyer had a whole new set of minds to spar with and the Santa Barbara group was being asked questions they couldn’t answer about their own subject. This illustrates the value of linking different viewpoints. Scientists tend to think that the particular aspect they are studying is the main determinant of the structure or process of interest. In our case we were trying to determine the mechanisms that determine community structure. Connell tended to think that species interactions were the main determinants. Slatyer thought in terms of the physical and chemical environment and life-history traits. In fact, all these and other factors play roles, at different scales of time and space.

Ecology had recently become the “in” thing following various environmental events such as the 1969 Santa Barbara oil spill. This had not only galvanized the environmental movement but had also set ecologists to thinking about how natural ecosystems recovered from disturbances, natural or man-made. So we all spent a lot of time kicking around ideas about ecosystem change, particularly the mechanisms underlying the succession of species invading disturbed sites. It gradually became clear that, although several ideas had been proposed about ecological succession, these had never been formulated as explicit testable hypotheses. We decided to try to do this and began to write a paper outlining our scheme.

By this time Slatyer had returned to Australia. We mailed drafts of our paper back and forth and slowly a set of testable hypotheses emerged about the mechanisms underlying ecological succession. We both liked to do field experiments; Slatyer had learned the techniques during his undergraduate training in agriculture, while Connell had begun in graduate school. Slatyer’s field experiments were done in herbaceous and shrub lands and at alpine and valley bottom tree lines. Connell’s in the marine intertidal, coral reefs, and rain forests. So we decided to include in the paper some suggestions about possible field experimental designs to test the hypothesis. Our students and colleagues, with great forebearance, read many drafts of our efforts during the two years it took to get the paper written and published.

The paper has since stimulated several field experimental studies and a lot of argument, published and unpublished. The reasons for its being cited often are probably (a) it brought together older ideas and some new ones into an organized set of testable hypotheses, and (b) it suggested various practical ways to test the hypotheses. We’re inclined to think that it was the contrast between our different viewpoints together with our shared belief in the power of experimental tests that produced the ideas in the paper.