A method is described for preparing 32P-launed adenosine triphosphate (ATP) of high specific activity, by a simple process that requires only commercially available substrates and enzymes. Hydrolysis of the labelled ATP with heavy meromyosin shows that 98-99 percent of the 32P is in the γ phosphate. [The SC19 indicates that this paper has been cited in over 1,970 publications.]

A Recipe for Hot ATP

Jan M. Glynn
Physiological Laboratory
University of Cambridge
Cambridge CB2 3EY
England

May 31, 1989

By the early 1960s, work in Cambridge and at Vanderbilt had shown that the sodium pump in cell membranes was identical with the (Na$^{+}$-K$^{+}$)-activated ATPase that J.C. Skou had detected in membrane fragments. The complexity of the overall reaction catalysed by the pump suggested that the reaction involved a sequence of steps. One way of trying to elucidate this sequence was to allow the pump to hydrolyse $[^\gamma\text{-}^{32}\text{P}]\text{ATP}$ and to see where the radioactivity went. At that time 32P-labelled ATP of high specific activity was not available commercially, and none of the reported methods for preparing it, whether chemical or enzymic, was very satisfactory. We therefore decided to develop a method that was simple, that gave a good yield, and that required only commercially available enzymes and substrates.

The method we finally adopted made use of the exchange reaction between $[^{32}\text{P}]\text{orthophosphate}$ and the terminal phosphate of ATP that occurs in the presence of phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase, and 3-phosphoglycerate. If the ingredients are mixed and allowed to stand for an hour at room temperature, more than 80 percent of the radioactivity is incorporated into the ATP; of this incorporated radioactivity, more than 90 percent is in the terminal phosphate. If carrier-free $[^{32}\text{P}]\text{orthophosphate}$ is used, the specific activity of the labelled ATP can be extremely high. Radiation damage to the enzymes does not seem to be a problem. On one occasion, to the dismay of the laboratory radiation officer, we used 100 mC of 32P. The method worked as usual, though the intensity of radiation was sufficient to darken the glass vessel in which the labelled ATP stood overnight.

In the innocent England of a quarter of a century ago, it seemed selfish to patent a method developed in a university laboratory and likely to be of value to colleagues involved in medical research. So we made no attempt to do so. But as well as publishing the method, we also wrote to the Radiochemical Centre, at Amersham, suggesting that they might like to use it. Their response was less than enthusiastic—they were not set up, they said, to use enzymes. Only after we had pointed out that all the ingredients could be bought in bottles, like groceries, and that no special enzymological skills were required, did they agree to try; and it was not until more than a year later, if I remember correctly, that they first marketed the product. Nowadays, despite the ready availability of $[^\gamma\text{-}^{32}\text{P}]\text{ATP}$ from commercial sources, our method is still widely used in individual laboratories, not only for making $[^\gamma\text{-}^{32}\text{P}]\text{ATP}$ itself, but also for making $[^{32}\text{P}]\text{tagged}$ ATP derivatives and analogues2,3 and other $[^{32}\text{P}]\text{labelled}$ nucleotides.4
