
This was the first book to treat the pro-
gramming task as a mathematical chal-
lenge. It shows how to derive a program
from its functional specification by first
choosing the structure of the proof that
will demonstrate the correctness of the
program under design. [The SC/a and
SSCI® indicate that this book has been
cited in over 260 publications.]

p

Edsger W. Dijkstra
Department of Computer Sciences

University of Texas
Austin, IX 78712-1188

May 8, 1988

In the early 1970s I knew I had to forge
programming into an effective mathe-
matical discipline and got my first
glimpses of how to do that. This vision
clashed with that of my Department of
Mathematics at the Eindhoven University
of Technology, which I left in 1973 to be-
come a Burroughs Research Fellow (with
the generous charter “to do my own
thing”). Then things moved quickly.

At the Blanchland meeting of the In-
ternational Federation for Information
Processing Working Group 2.3 on “Pro-
gramming methodology,” during the
night of October 23-24, 1973, all the
pieces fell into place. That evening I
could not sleep and found myself prepar-
ing my lecture; with my brain burning,
I left my bed at 2:30 a.m and wrote for
more than an hour.

It was not only my former department
that was not ready for it. When, eight

months later, I submitted a paper under
the title “Guarded commands, nondeter-
minacy and a calculus for the derivation
of programs” to the Communications of
theACM, one referee objected so strong-
ly that I had to remove “a calculus” from
the title. This paper1 presented the bare
ingredients; the monograph A Discipline
of Programming developed the method-
ology and applied it to many program-
ming problems.

The book embodied four novelties, two
technical ones and two stylistic ones.
One technical novelty was to define pro-
gramming language semantics by means
of a predicate transformer for the
weakest precondition. Its other technical
novelty was the inclusion of nondetermi-
nacy, thereby smoothing the way to treat
uni- and multiprogramming on the same
footing. One stylistic novelty was the in-
troduction of “guarded commands,” a
highly elegant notational device that is
equally applicable to alternative and re-
petitive programming constructs and thus
became the preferred vehicle for many
researchers in the field. Its other stylistic
novelty was its stress on methodology: in-
stead of offering problems and solutions,
it offered problems and then discussed
how to solve them.

Now, more than a decade after its pub-
lication, it is still a standard work that
sells accordingly. It is also dated. In the
meantime we have gained a lot of expe-
rience in carrying out the type of formal
manipulations required, and, thanks to a
few (minor but vital) notational innova-
tions, we have become much more effec-
tive in the application of the predicate
calculus, which is now the modern pro-
grammer’s indispensable tool for his daily
reasoning.2-3

16

~i~
J,9-~-/4.’

©1988 by ISI® CURRENT CONTENTS®

CC/NUMBER 40

This Week’s Citation Classic® OCTOBER 3,

I Dijkstra E W. A disciplineofpm~.amming.
EnglewoodCliffs, NJ: Prentice-Hall, 1976. 217 p.

L [TechnologicalUniversity, Eindhoven, The Netherlandsj

1. Dljkstrs E W. o3uasdedcommands,nondetenninacyand formalderivationof pangrams.Commun. ACM 18:453-7, 1975.
(Cited 85 Wnes.)

2. GeI~D. The scienceof programming.New York: Springer-Verlag.1981. 366 p. (cited44)times.)
3. ReynOlds.1 C. Thecraft of programming.EnglewoodCliffs. NI: Prenttce/HaIIInternational.1981. 434 p. (Cited 10 times.)


