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In the first paper, bounds and expressions for the efas-
tic moduli of two- or many-phase nonhomogeneous
materials are obtained by an approximate method
based on the variational theorems of the theory of
elasticity and on a concentric-spheres model. In the
second paper, bounds and expressions for the effec-
tive elastic moduli of materials reinforced by parallel,
hollow, circular fibers are derived by a variational
method. [The SCI® indicates that these papers have
been cited in over 205 and 180 publications,
respectively.]
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During 1959-1960 [ spent a year at Harvard Uni-
versity as a research fellow, and ! decided to tackle
again, after many previous unsuccessful efforts, the
difficult problem of evaluation of the effective elastic
properties of a solid that contains spherical particles
of another material. This problem and the related
problems of the evaluation of effective conductmty
and effective viscosity of a suspension of rigid
spheres in a fluid had been of considerable interest
for a long time; and in 1960 the only available exact
results were for the case of dilute concentration (a
few percent volume fraction of particles), in which
case mutual interaction of particles can be neglected.
Such results had been originated by very illustrious
scientists: Maxwell for conductivity in 1873 and Ein-
stein for viscosity in 1906.

1 constructed a special geometrical model that 1
called composite spheres assemblage (CSA). Each
composite sphere consists of a spherical particle that
is surrounded by a concentric matrix shell. The vol-
ume fractions of particle and matrix material are the
same in each sphere, but the spheres themselves can
be of any size. An arbitrary volume is then filled out
with composite spheres of diminishing size, and the
CSA is approached as a limit of complete filling. This
model was analyzed by variational methods, and it
turned out that it yielded a closed-form exact solu-
tion for the effective bulk modulus and close lower
and upper bounds for the effective shear modulus.

As is often the case, the development of my think-
ing was not too orderly. | started work with a single

composite sphere and noted that it had the same ef-
fective bulk meodulus for displacement and stress
boundary conditions but a different effective shear
modulus for pure shear displacement and pure shear
tractions on the boundary. | found the latter results
very confusing until | realized that on the basis of
variational arguments they could be interpreted as
upper and lower bounds for a composite material
that consists entirely of composite spheres.

About a year later, at the University of Pennsyl-
vania, | was involved, together with S. Shtrikman,
in the construction of bounds for effective elastic
properties of macroscopicaily isotropic, two-phase
materials when the internal phase geometry is arbi-
trary and only the volume fractions are specified.
This work has been published® and was the subject
of a previous Citation Classic commentary, It tumed
out that the bulk modulus bounds could be identified
with CSA exact bulk moduli, which led to the im-
portant conclusion that the arbitrary phase geometry
bounds were the best possible when only phase vol-
ume fraction information was given. Bound improve-
ment required more geometrical information. As for
the shear modulus, it turned out that one of the ar-
bitrary phase geometry bounds was always better
than one of the CSA bounds, and this led to substan-
tial improvement of the CSA bounds.

In 1962 | became involved in research on proper-
ties of unidirectional fiber composites, which was
then an emerging technology, as a consultant to the
Valley Forge Space Sciences Laboratory of General
Electric. Since fibers are long circular cylinders, it
was a natural step to treat this problem in terms of
a composite cylinder assemblage, and this was done
together with B.W. Rosen. However, such a material
is anisotropic and has five independent effective
elastic properties as opposed to the two of a spheri-
cal particle composite. We were able to obtain
closed-form solutions for four of these while the fifth,
the transverse shear modulus, could again only be
bracketed by bounds that were, however, quite
close.

Composite materials are of considerable practical
importance, and there have been many attempts to
evaluate effective properties on the basis of various
assumptions and empiricisms, | think that the papers
under discussion have been widely quoted because
they give exact and simple closed-form it
though for special models of composite materials,
that are mostly in very good agreement with experi-
mental data.

For a recent review of work in this field, see
reference 2.
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