Formulae were given for the X-ray diffraction patterns of helical structures, and evidence was provided that the structure of a synthetic polypeptide was based on the α-helix of Pauling and Corey. [The $S C 1{ }^{\circ}$ indicates that this paper has been cited in over 375 publications since 1955.]

William Cochran Department of Physics University of Edinburgh
Edinburgh EH9 3IZ Scotland
February 17, 1987

This work was done 35 years ago! In 1951 I had just received my first tenured appointment as a physics lecturer in Cambridge. Francis Crick was a research student in the Medical Research Council Unit of the Cavendish-he had come late into physics research. Vladimir Vand was a research fellow in Glasgow, whom I had met but did not know well. For me the story began when, without much expectation of being able to interpret them, Itook some X -ray photographs of a specimen of poly- γ-methyl-L-glutamate that my professor, Sir Lawrence Bragg, had obtained from another research group. My diary for October 2, 1951, notes: "The Prof shows a touching faith in my ability to extract a complicated crystal (sic) structure from almost no data"-the material was only semicrystalline, and I was used to looking at crystals. A month or so later Bragg received, possibly as a referee, a paper by Vand on the theory of X-ray diffraction by helical structures.

He passed it on to me, and I concluded that Vand's answer was correct for a continuous helix but not for atoms on a helix. Crick also saw the paper, and when we compared notes the following day, we found that we had arrived at the same (correct) answer by different routes. A few days later 1 suddenly realised that the photographs of poly- - -methyl-L-glutamate, which I had put aside, could be explained as the diffraction pattern of atoms on helices of different radii. The structure turned out to be based on the a-helix of Linus Pauling and Robert 8. Corey. ${ }^{1}$ It was, 1 believe, the first fairly conclusive experimental evidence for the existence of a helical structure at the molecular level, and Crick and 1 published a short note on the subject. ${ }^{2}$
The main value of this work, seen in retrospect, is that it was a first step on the road to the discovery of the structure of DNA by Jim Watson and Crick. ${ }^{3-5}$ The first I knew of that work was when Crick arrived excitedly in my office to take me to see the model of a double helix that they had built. Actually, it was their first and incorrect version, but I would not have been more impressed by the correct version-l had not seen the experimental evidence contained in photographs of B-type DNA, and I distrusted "speculation." It was some time before I gradually became convinced of their tremendous success.
TThe α-helix has now been recognized as a feature of the majority of protein structures, and a vast industry of protein crystallography has developed. ${ }^{6,7]}$

[^0]
[^0]: 1. Pauling L \& Corey R B. The strucrure of synthetic polypepides. Proc. Nat. Acad. Sci. USA 37:241-81. 1951. (Cited 105 times since 1955.)
 2. Cochran W \& Crick F H C. Evidence for the Pauling-Corey α-helix in synthetic polypeptides. Nature 169:234-5. 1952.
 3. Watson J D \& Crick F H C. A strucrure for deoxyribose nucleic acid. Nanure 171:737-8. 1953.
 (Cited 1.235 umes since 1955.)
 4. Watson J D. The double helix: a personal account of the discovery of the strucrure of DNA. (Stent G S. ed.) New York: Nonton. 1980. 298 p.
 5. Watson J D \& Tooze J. The DNA ston: a documentary history of gene cloning. San Francisco: Freeman, 1981. 605 p . 6. Wyckoff H W, Hirs C H W \& Timesheff S N, eds. Diffraction methods for biological macromolecules. A. Preface. Meth. Enzymology 114:R11. 1985.
 6. -_ Diffraction methods for biological macromolecules. B. Preface. Meth. Enzymology 115:R9. 1985.
