Injection of living Vibrio cholerae into the lumen of a loop of rabbit intestine isolated by a ligature causes accumulation within this loop of a large amount of fluid having gross similarity with cholera stool. Evans blue solution injected intravenously leaks into this fluid suggesting alteration of permeability of intestinal capillaries by Vibrio cholerae. The SCIE indicators that this paper has been cited in over 370 publications since 1955.

While working in the laboratory of Sir Roy Cameron at the University Medical School in London on the pathology of experimental hydrocephalus, De developed a keen interest in experimental bacteriological pathology as he watched the course of another study, this one on Shiga toxin, being carried on in the same laboratory. He must have conceived the idea of working on cholera at that time, as he brought with him from London appliances for experimenting with rabbits. Immediately on his return to Calcutta, even before he became professor of pathology at Nilratan Sircar Medical College, De started experimental work on the pathogenesis of cholera with his former colleagues at the Calcutta Medical College. He did not believe in the poison theory of Koch.

First, De attempted to produce symptoms of cholera in rabbits by injecting heavy cultures of V. cholerae into the small intestine. The animals subsequently had no diarrhoea, but on autopsy the huge caecum, which normally contains pasty semisolid material, was found to be distended with semiliquid faecal matter from which V. cholerae could be recovered. De argued that the fluid that poured into the small intestine accumulated in the caecal backward and could not find its way out. So next, he bypassed the caecum, isolated a four-inch segment of small intestine by silk ligatures, introduced V. cholerae mixed with 1 ml peptone water medium, and killed the animals the next day. The ligated segment was distended with about 15 ml rice-water fluid while the control segment was collapsed. Evans blue solution injected intravenously leaked into this fluid suggesting alteration of permeability of intestinal capillaries. Thus De found that he had a satisfactory animal model for studying the effect of V. cholerae and other enteropathogenic organisms. He studied the pathogenicity of strains of E. coli from acute and chronic enteritis by this technique. The success of this animal model probably led to extensive citation of the work.

At Calcutta Medical College, which De had joined in 1956, facilities for further studies were not available, and consequently he also worked at the Bose Institute where one of us (AS) was his colleague. In subsequent studies he showed, by injecting bacteria-free culture filtrate into the isolated rabbit loops, that the loops were distended with fluid and thus proved the enterotoxicity of the culture filtrate. Finally, he established the absence of any role of the endotoxin in the outpouring of fluid by the negative results he obtained from injecting sterile extracts of sonicated, washed vibrios into rabbit loops. He concluded that it was a cholera exotoxin that caused fluid accumulation in the small intestine. De's work on cholera exotoxin has recently been reviewed.

Thus De found that the loops were distended with fluid and thus proved the enterotoxicity of the culture filtrate. Finally, he established the absence of any role of the endotoxin in the outpouring of fluid by the negative results he obtained from injecting sterile extracts of sonicated, washed vibrios into rabbit loops. He concluded that it was a cholera exotoxin that caused fluid accumulation in the small intestine. De's work on cholera exotoxin has recently been reviewed.

De's integrity and high sense of dignity held him aloof from the powers that control awards, honours, and fellowships, but many in his own field or related disciplines knew the merit of his contribution.