The paper describes an efficient method of calculating densities of states $g(v)$ in cubic crystals. The constant energy surface is approximated by a set of parallel planes which allows for analytic calculation of $g(v)$. This method made it possible to perform elaborate and complex computations of phonon and electronic densities of states within relatively short computer times which could not have been envisaged before. Within several years many developments and ramifications followed, but they all used the same idea of cross-section area.

"A few of the more important developments were: (a) the extension of the method to so-called real-part functions; (b) the inclusion of transition probabilities within the framework of the method, which enabled the computation of spectral functions; and (c) the replacement of the cubic small cell by a tetrahedron, which proved to be very useful."

"I believe that the reason this paper is highly cited is mainly its usefulness. It did not offer any new insight into the physics of the solid state, but enabled accurate calculations that sometimes led to an unexpected prediction. This actually happened when an accurate calculation of $g(v)$ of aluminum led to a prediction of a low temperature specific heat anomaly which was observed later."

The main significance of this paper was that it became the basis for high-resolution calculations of spectral properties in solids derivable from theoretical models. This method made it possible to perform elaborate and complex computations of phonon and electronic densities of states within relatively short computer times which could not have been envisaged before. Within several years many developments and ramifications followed, but they all used the same idea of cross-section area.

"As I see it, the main significance of this paper was that it became the basis for high-resolution calculations of spectral properties in solids derivable from theoretical models. This method made it possible to perform elaborate and complex computations of phonon and electronic densities of states within relatively short computer times which could not have been envisaged before. Within several years many developments and ramifications followed, but they all used the same idea of cross-section area."

"I believe that the reason this paper is highly cited is mainly its usefulness. It did not offer any new insight into the physics of the solid state, but enabled accurate calculations that sometimes led to an unexpected prediction. This actually happened when an accurate calculation of $g(v)$ of aluminum led to a prediction of a low temperature specific heat anomaly which was observed later."

CC/NUMBER 6
FEBRUARY 6, 1984

This Week's Citation Classic™

[Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN]