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INTRODUCTION

This paper analyzes Urquhart’s Law of Supralibrary Use. Supra-
library use is defined as the use by a given library’s patrons of materials
supplied from outside the library through either interlibrary loan or cen-
tral document delivery. It is contrasted to intralibrary use, which is the
use of a library’s own materials by its own patrons. Stated in its simplest
form, Urquhart’s Law specifies that the supralibrary use of scientific
and technical (sci/tech) journals is positively correlated with the num-
ber of libraries holding these journals in a system and therefore is a mea-
sure of their aggregate use within the library system, including their
intralibrary use at the individual libraries of the system. The law was
formulated by Donald J. Urquhart, who established the National Lend-
ing Library for Science and Technology (NLL) that later was merged
into the British Library Lending Division (BLLD), now called the Brit-
ish Library Document Supply Centre (BLDSC). Urquhart was the first
librarian to investigate scientifically the nature of sci/tech journal use
and apply probability to it.

The paper will be published in three parts in three separate issues of
this journal. Part 1 discusses the initial formulation of the law and its
statistical bases; Part 2 will analyze how Urquhart applied probability to
create and manage a central document delivery collection; and Part 3
will be dedicated to the implications of the law for all the libraries of a
given library system. Each part will have an introduction, which will lay
out not only what it will discuss but will also summarize the discussions
and conclusions of the preceding parts. The purpose of these introduc-
tions is threefold: (1) to provide the reader with a roadmap of the overall
structure and logic of the paper; (2) to enable, as much as possible, each
part to be read independently from the others; and (3) to highlight the
important points for the reader.

Part 1 shows Urquhart’s Law as a natural outgrowth of the Law of
Scattering formulated in the early 1930s by S. C. Bradford, director of
the Science Museum Library (SML) in London. Bradford’s Law de-
scribes the distribution of articles on a given scientific subject across
journal titles. In doing so, it demonstrates the inability of sci/tech librar-
ies to hold all the titles necessary to their patrons, proving the need of
such libraries for document delivery support from either other sci/tech
libraries at their level or a comprehensive central scientific library.
Bradford aspired to convert the SML into a central document delivery
library, and Urquhart fulfilled these aspirations by establishing the
NLL. To prepare for the establishment of this library, Urquhart con-
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ducted a study of the loans made by the SML to outside organizations in
1956. This study laid the bases for his law of supralibrary use.

The primary focus of Part 1 is the statistical analysis of Urquhart’s
data on the external loans made by the SML in 1956. These data are
utilized here for the didactic purpose of teaching librarians about the
probability distributions underlying library use as well as how to iden-
tify these distributions through simple mathematical calculations and
graphical techniques. Part 1 analyzes the set structure of sci/tech jour-
nals arising from Bradford’s Law and the stochastic processes underly-
ing these journals’ use. Using Lexian analysis, it demonstrates how
these stochastic processes are partly a function of this set structure.
The binomial and the Poisson processes are discussed, and the greater
applicability of the Poisson process to library use is demonstrated. As
a component of this, Part 1 explains the crucial importance for library
collection management of Bortkiewicz’s Law of Small Numbers, which
establishes the theoretical basis for the stability and permanence of the
low-use classes. There are presented both the simple Poisson distribu-
tion and compound Poisson distributions, the key one of which is the
negative binomial distribution. Compound Poisson distributions are
proven to be the best model of library use due to their ability to capture
all the stochastic processes operative in this use. Part 1 concludes with
an explanation of the various indices of dispersion, which can be uti-
lized to identify the stochastic processes and resulting probability distri-
butions operative in library use.

GENESIS OF URQUHART’S LAW

Two of the most important libraries in the historical development of
library and information science were the Science Museum Library
(SML) in South Kensington, London, and the National Lending Library
for Science and Technology (NLL), a direct predecessor of the pres-
ent-day British Library Document Supply Centre (BLDSC), in Boston
Spa, Yorkshire. The first was the prototype for the second. Each of these
libraries is closely associated with an important bibliometric law formu-
lated by the person serving as its head.

The SML is linked to Bradford’s Law of Scattering. This law was de-
rived by S. C. Bradford (1934), who was the chief librarian there for the
period 1925-1938. It deals with the distribution of articles on a given
scientific subject across journals, positing that such articles concentrate
in a small nucleus of journals specifically devoted to the subject, and
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then scatter in ever decreasing numbers across other groups or zones of
journals. As a result of this phenomenon, Bradford came to the conclu-
sion that special libraries could never collect the complete literature on
their subject, and in his classic book Documentation, Bradford (1953,
102-122) advocated the establishment of a national central library for
science and technology, one of whose major functions would be “ex-
ternal lending” or “the lending of books to research workers and stu-
dents through the medium of approved institutions and lending agencies”
(p. 117). Bradford assiduously worked to convert the SML into such a
library. Prior to his tenure as chief librarian, this library had served the
Science Museum and the neighboring Imperial College of Science and
Technology. Upon taking charge of it, Bradford strove to develop its
holdings into a comprehensive collection of the world’s scientific and
technical (sci/tech) literature, making these resources available to scien-
tists nationwide through approved institutions with which they were as-
sociated.

Bradford’s vision of a national central library of science and technol-
ogy was implemented by Donald J. Urquhart. The two men were similar
in that they both had science doctorates. Urquhart began his library ca-
reer at the SML, obtaining a job at this institution in 1938 at the time
Bradford retired as its head. His service there was interrupted by World
War II, but after the war he returned to the SML, where he stayed until
1948 when he moved to the Department of Scientific and Industrial Re-
search. As its name implies, the Department of Scientific and Industrial
Research, or DSIR, was the agency through which the British govern-
ment supported scientific research and ensured that industry utilized
new scientific findings.

Urquhart rose to prominence at the Royal Society Scientific Informa-
tion Conference of 1948, contributing three papers to this conference. In
one of these papers entitled “The Organization of the Distribution of
Scientific and Technical Information” Urquhart (1948, 526) proposed a
national library that would have “a specific responsibility for organiz-
ing the library service for scientific and technical literature.” At the end
of 1956, DSIR formed a Lending Library Unit headed by Urquhart with
a staff of four, of whom the most important was Miss R. M. Bunn. This
unit planned the creation of the National Lending Library for Science
and Technology (NLL). It was in the establishment and operation of this
library that Urquhart developed what will be termed in this paper
“Urquhart’s Law of Supralibrary Use.”
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THE ANALYSIS OF 1956 SCIENCE MUSEUM LIBRARY (SML)
EXTERNAL LOANS

The first step in the creation of the NLL was an analysis of the loans
of sci/tech journals made by the SML to outside organizations during
1956. This analysis was the first large-scale scientific study of journal
use, and it must be emphasized that it was a study of supralibrary use.
Supralibrary use may be defined as the use by patrons of a given library
of materials not owned by that library but supplied from the outside
through either some form of centralized document delivery or from
other libraries by means of interlibrary loan. It is to be contrasted with
intralibrary use, which is the use by the patrons of a given library of ma-
terials held by that library. Therefore, the analysis of the SML external
loans of sci/tech journals in 1956 was a study of United Kingdom (UK)
supralibrary use of these materials in that year.

Urquhart (1959) reported on this analysis in a paper to the Interna-
tional Conference on Scientific Information held in Washington, DC, in
November,1958. Another report on the SML analysis was published by
Urquhart and Bunn (1959) the following year. The key findings of the
study of the 1956 SML external loans of sci/tech journals were two. One
was that the distribution of supralibrary use of sci/tech journals is highly
skewed. This distributional finding was summarized by Urquhart and
Bunn (1959, 21) thus:

In general it seems that a small percentage of the current serial ti-
tles account for a large percentage of the use of all serials. In the
Science Museum in 1956 about 350 titles accounted for 50 per
cent. of the total use of serials, and about 1200 titles for 80 percent.
of the total use. This, despite the fact that in 1956 the Science Mu-
seum Library contained 9120 current serials, and possibly an equal
number of dead ones. In general terms it appeared that, excluding
less than 2000 titles, the total national interlibrary loan use could
be satisfied by one loan copy.

By use of this information, it was possible to approximate the shape
of the distribution of journals by number of 1956 SML external loans as
well as to estimate its key statistical characteristics. These goals were
accomplished in the following manner. First, the loan classes from 1 to
382 loans and the number or frequency (f) of titles in these classes were
taken from Table VII in Urquhart (1959, 291). The total number of titles
actually loaned was 5,632. From the above statement that the SML had
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9,120 current serials and an equal number of dead ones, the total SML
serial holdings were estimated to be 18,000 titles, and the number of
journals in the zero class was calculated by subtracting the number of
serials loaned, or 5,632, from 18,000 to arrive at 12,368 titles.

These results are given in Columns 1-2 of Table 1 and graphed by the
bar chart in Figure 1.

Estimation of the key statistical characteristics of the distribution be-
gan by approximating the average or mean (m) number of loans per title
in each class. For classes 0 through 4, the class mean was a given. The
estimates of the mean loans per title for the other classes were based on
a number of complex factors, including the loan information on 391 ti-
tles presented in the appendix to Urquhart and Bunn (1959, 25-37). Col-
umn 4 of Table 1 gives the final estimates of the class mean loans per
title (m). These estimates were adjusted so that class mean loans per title
(m) in Column 4 multiplied by the frequency of titles per class (f) in
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TABLE 1. Estimated Observed Frequency Distribution of Scientific Journals
over 1956 Science Museum Library (SML) External Loan Classes

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7

Loan Class

No. Titles
in Class

[f]

Loans per
Class

[x]

Class Mean
Loans per

Title
[m]

Deviation
Set Mean

from Class
Mean

[m M] (m M)^2 f*(m M)^2

0 12,368 0 0.00 �2.96 8.74 108,103.29

1 2,190 2,190 1.00 �1.96 3.83 8,382.61

2 791 1,582 2.00 �0.96 0.91 723.60

3 403 1,209 3.00 0.04 0.00 0.76

4 283 1,132 4.00 1.04 1.09 308.19

5 to 9 714 5,002 7.01 4.05 16.40 11,708.64

10 to 19 541 7,732 14.29 11.34 128.50 69,517.87

20 to 29 229 5,284 23.07 20.12 404.68 92,670.69

30 to 39 136 4,446 32.69 29.74 884.35 120,272.06

40 to 49 92 3,773 41.01 38.05 1,447.94 133,210.64

50 to 99 193 12,386 64.17 61.22 3,747.67 723,300.74

100 to 382 60 8,480 141.33 138.38 19,148.28 1,148,896.80

SUM 18,000 53,216 2,417,095.88

Set Mean Loans per Title (M) = SUM(x)/SUM(f) = 53,216/18,000 = 2.96

Variance (VAR) = SUM(f*(m � M)^2/((SUM(f) � 1)) = 2,417,095.88/(18,000 � 1) = 134.29

Standard Deviation (STDEV) = SQRT(VAR) = SQRT(134.29) = 11.59



Column 2 yielded loans per class (x) in Column 3 that in turn summed to
the total number of reported loans of 53,216.

The summary of the key distributional findings by Urquhart and
Bunn above suggests two methods of aggregating the frequency distri-
bution of sci/tech journals across 1956 SML external loans into broader
loan classes. These methods are shown in Table 2. The first method is to
aggregate the distribution into two loan classes: low (0 to 9 loans) and
high (100 to 382 loans). This method of aggregation played a key role in
Urquhart’s management of the NLL journal collection. Inspection of
the high loan class reveals that it contained 1,251 titles that comprised
6.95% of the titles and accounted for 79.11% of the loans. This accords
well with the statement by Urquhart (1959, 293) in his 1958 conference
report that “about 1,250 serials (or less than 10% of those available if
the non-current serials are included) are sufficient to meet 80% of the
demand for serial literature.” The second method is to aggregate the
journals into three loan classes: low (0 to 9 loans), high (10 to 39 loans),
and super high (40 to 382 loans). It can be seen that the super high class
encompassed 345 titles or 1.92% that accounted for 46.30% of the
loans. This comes close to the above statement in Urquhart and Bunn
that “about 350 titles accounted for 50 per cent of the total use of seri-
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als.” From these facts it can be seen that the above estimate of the fre-
quency distribution of sci/tech journals across the 1956 SML external
loans is a good approximation of the one that was actually observed.

The above approximation can now be utilized to calculate certain key
statistical characteristics of the frequency distribution of sci/tech jour-
nals across 1956 SML external loans. In making such calculations, Ex-
cel spreadsheet notation is utilized in this paper. The first characteristic
is the arithmetic mean or average loans per title. AVERAGE is the Ex-
cel function for arithmetic mean. This is a measure of central tendency,
and for the entire set of SML journals it is derived by dividing the total
number of journals into the total number of external loans. In Table 1,
the set mean is designated by M to distinguish it from the class means m.
Using the terminology of Table 1, the calculation of M is the following:

AVERAGE (M) = SUM(x)/SUM(f) = 53,216/18,000 = 2.96

The next two statistical characteristics are both measures of the disper-
sion of the external loans of individual titles around the set mean M. Of
these, the basic measure is sample variance. Variance is a measure of
the variability or dispersion of the values of a dataset found by averaging
the squared deviations about the mean. Table 1 demonstrates a shorthand
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TABLE 2. Two Methods of Aggregating 1956 Science Museum Library (SML)
External Loan Classes

1. Two classes

Loan Class
No. Titles in

Class
Mean Loans

per Title
Loans per

Class
% Titles per

Class
% Loans per

Class

Low
( 0 to 9)

16,749 0.66 11,115 93.05% 20.89%

High
(10 to 382)

1,251 33.65 42,101 6.95% 79.11%

SUM 18,000 53,216 100.00% 100.00%

2. Three Classes

Loan Class
No. Titles in

Class
Mean Loans

per Title
Loans per

Class
% Titles per

Class
% Loans per

Class

Low
( 0 to 9)

16,749 0.66 11,115 93.05% 20.89%

High
(10 to 39)

906 19.27 17,462 5.03% 32.81%

Super High
(40-382)

345 71.42 24,638 1.92% 46.30%

SUM 18,000 53,216 100.00% 100.00%



method of calculating variance that is of great utility in library research.
With this method, one first groups the observations into classes as is
done in Columns 1-2. Then, as was done in Column 4, one estimates ei-
ther the midpoint or mean for each of these classes–in this case, m. The
next steps are to subtract the set mean M from each class mean m (Col-
umn 5), square these remainders (Column 6), and multiply the squared
remainders by the number or frequency of observations f in each class
(Column 7). These products are then added, and the resulting sum is
then divided by the sum of the observations f. For technical reasons, it is
best to subtract 1 from the sum of the observations. The result is the
variance. In the Table 1 terms, the calculation is the following:

VAR = SUM(f*(m�M^ 2)/(SUM(f)�1) = 2,417,095.88/(18,000�1) = 134.29

The other measure of dispersion is the sample standard deviation, which
is found by taking the square root of the sample variance thus:

STDEV = SQRT(VAR) = SQRT(134.29) = 11.59

It is to be noted that the set variance is much greater than the set mean
and that the bulk of the variance–82.97%–derives from the titles in the
super high loan class.

In his report to the 1958 scientific information conference, Urquhart
(1959, 289-291) related the distribution of sci/tech journals by supra-
library use to the number of library holdings of these journals. The re-
sult comprised the second key finding of the analysis of 1956 SML
external loans. To do this, he first listed in descending rank order the
top 10 journals by 1956 SML external loans and their corresponding
library holdings as given by the British Union Catalogue of Periodicals
(BUCOP). One is struck by the prestigious nature of most of these top
10 journals. The highest one was the Proceedings of the Royal Society
of London (Series A) with 382 external loans, and among these top jour-
nals were Science and the Journal of the Chemical Society. Their mean
number of external loans was 232.5. Urquhart then took samples of 10
journals from those titles with respectively 20, 2, and 0 external loans.
He averaged the BUCOP holdings of these four samples and summa-
rized the results in a table that is replicated by Table 3. Here is visible
the strong correlation of SML external loans with BUCOP holdings,
with the average number of these holdings skewing rapidly downward
from 57 for the top ten titles by SML loans, to 22.4 for the titles with 20
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loans, to 4.5 for the titles with 2 loans, and to 2.3 for the titles with 0
loans. Urquhart drew the following conclusion from these data (p. 290):

External organizations will naturally only borrow from the Sci-
ence Museum Library scientific literature which they do not hold
themselves, or which they cannot obtain from some more accessi-
ble collection. Thus the external loan demand on the library is, in
general, only a residual demand . . . Nevertheless, possibly be-
cause so many external organizations (some 1200) use the Science
Museum Library, it appears . . . that the use of the copies of a serial
in the library is a rough indication of its total use value in the
United Kingdom.

From the above, it is now possible to derive three of the main tenets of
Urquhart’s Law of Supralibrary Use: (1) the supralibrary use of sci/tech
journals is highly skewed and concentrated on a relatively few titles; (2) the
supralibrary use of sci/tech journals is highly correlated with the num-
ber of libraries holding these journals; and (3) the supralibrary use of
sci/tech journals is a rough indicator of the total use value of these jour-
nals and therefore of their intralibrary use.

THE PROBABILISTIC BASES OF LIBRARY USE

Sets and Probability in Respect to Sci/Tech Journals

The great statistician, Kendall (1949, 101), distinguished two basic
approaches toward the problem of probability. One takes probability as
“a degree of rational belief,” whereas the second defines probability in
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TABLE 3. Relationship of Number of 1956 Science Museum Library (SML) Ex-
ternal Loans to Number of Holdings Listed in the British Union Catalogue of Pe-
riodicals (BUCOP)

Loan Class Mean No. BUCOP
Holdings

10 Titles Most Frequently Loaned (Mean No. Loans = 232.5) 57

Sample of 10 Titles Loaned 20 Times 22.4

Sample of 10 Titles Loaned 2 Times 4.5

Sample of 10 Titles Loaned 0 Times 2.3

Adapted from: Data from Urquhart 1959, 291, Table VI.



terms of “frequencies of occurrence of events, or by relative proportions
in ‘populations’ or ‘collectives.’” In this paper, we will be concerned
with the frequency theory of probability. The most cogent development
of the frequency theory was done by Von Mises (1957), who based
probability on relative frequencies within what he termed the “collec-
tive” but may also be considered a “set.” Von Mises defined the collec-
tive as “a sequence of uniform events or processes which differ by
certain observable attributes, say colours, numbers, or anything else”
(p. 12), and he admonished, “It is possible to speak about probabilities
only in reference to a properly defined collective” (p. 28). Von Mises
(pp. 16-18) used as an example of this requirement the fact that a per-
son’s probability of dying at a given age is dependent on whether this
person is defined as belonging to a collective containing both men and
women or only men. Mises’ requirement of well-defined sets poses one
of the central problems for the application of the frequency theory of
probability in library and information science.

Set definition in respect to sci/tech journals is governed by Brad-
ford’s Law of Scattering. Starting from the principle of the unity of sci-
ence by which every scientific subject is related to every other scientific
subject, Bradford (1934, 1986) gave the following verbal formulation
of his Law of Scattering:

. . . the law of distribution of papers on a given subject in scientific
periodicals may thus be stated: if scientific journals are arranged in
order of decreasing productivity of articles on a given subject, they
may be divided into a nucleus of periodicals more particularly de-
voted to the subject and several groups or zones containing the
same number of articles as the nucleus and succeeding zones will
be as 1 : n : n2 . . .

Bensman (2001, 238) interpreted Bradford’s Law as “a mathematical
description of a probabilistic model for the formation of fuzzy sets.”
Classical set theory is based upon the binary “crisp set,” whose ele-
ments are either clearly members of the set–numerically represented by
1–or not members of the set–numerically represented by 0. In contrast, a
“fuzzy set” consists of elements that are not always fully in the set and
can have membership grades ranging from 0 to 1.

The relationship of the Law of Scattering to fuzzy set theory can be
demonstrated with the data presented by Bradford (1934) on the distri-
bution of articles on the subject Lubrication over a set of 164 journals
during the period 1931 through June 1933. These data were compiled
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from references to Lubrication articles in a current bibliography being
prepared at the Science Museum Library. Bradford aggregated his data
into 3 classes: (a) journals producing more than 4 references per year;
(b) journals producing more than one and not more than 4 references per
year; and (c) journals producing 1 or less references per year. The re-
sults are shown in Table 4, and it can be seen that the distribution is very
similar to the distribution of journals by 1956 SML external loans ob-
served by Urquhart more than 20 years later. In the terms of Bradford’s
Law of Scattering, class a is the “nucleus of periodicals more particu-
larly devoted to the subject,” whereas classes b and c are the “several
groups or zones containing the same number of articles as the nucleus.”
Thus, class a is comprised of 4.9% of the journals that produced 27.9%
of the Lubrication references, and the number of journals in classes b
and c has to rise exponentially from 17.7% to 77.4% to produce approx-
imately the same percentage of Lubrication references. Bradford’s three
classes can also be defined by their decreasing subject membership
grade in the following manner: (a) Lubrication; (b) Lubrication/Not Lu-
brication; and (c) Not Lubrication/Lubrication. Using these definitions,
it is possible to construct the following function for quantifying the
membership grade of the 164 journals in the Lubrication set:

If the number of references per year to a journal is greater than 4,
then the membership grade of this journal equals 1; but if the num-
ber of references per year equals or is less than 4, then the member-
ship grade of this journal equals the number of references per year
divided by 4.01.

Applying this function to Bradford’s Lubrication data yields the re-
sults shown in Table 5. Here is seen a small core of journals fully in the
Lubrication set with a membership grade of 1, and outside this core the
membership grade of the journals skews rapidly downward from 0.998
to 0.125 as the number of journals skews rapidly upward from 3 to 102.
As the proportion of Lubrication articles decreases in the journals,
scope opens in the journals for articles on other subjects. A zero
class–(d) Not Lubrication–has been added in the table with a question
mark for the number of journals in it. The number of journals in the zero
class has been deliberately left open, as this is an exceedingly complex
question, which Bradford himself never successfully resolved.

Bradford’s Law of Scattering mandates that subject sets of sci/tech
journals will not be crisp ones but complex composites of various sub-
ject subsets. Moreover, the inability to determine the zero class means
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TABLE 4. Bradford Journal Classes Derived from References to Lubrication,
1931-June, 1933 (Few 1933 References)

Class No. Journals % Journals No. References % References

(a) More than 4 References
per Year

[22 to 9 Total References]

8 4.9% 110 27.9%

(b) 2 to 4 References
per Year

[8 to 3 Total References]

29 17.7% 133 33.7%

(c) 1 or Less References
per Year

[2 to 1 Total References]

127 77.4% 152 38.5%

SUM 164 100.0% 395 100.0%

TABLE 5. Bradford’s Law in Terms of Fuzzy Set Theory: Lubrication, 1931-
June 1933 (Few 1933 References)

Classes No. References
per Year (1)

No. Journals Producing
References

Membership Grade (2)

(a)
Lubrication

11.00 1 1.000

9.00 1 1.000

7.50 1 1.000

6.50 2 1.000

5.00 2 1.000

4.50 1 1.000

Classes a/b Boundary 4.01 1.000

(b)
Lubrication/

Not Lubrication

4.00 3 0.998

3.50 3 0.873

3.00 1 0.748

2.50 7 0.623

2.00 2 0.499

1.50 13 0.374

Classes b/c Boundary 1.01 0.252

(c)
Not Lubrication/

Lubrication

1.00 25 0.249

0.50 102 0.125

Classes c/d Boundary 0.01 0.002

(d)
Not Lubrication 0.00 ? 0.000

(1) In calculating the number of references per year for Lubrication, Bradford reported that it was assumed
that practically all the references related to 1931 and 1932 only and the divisor used was therefore 2.
(2) Membership function: If the number of references per year to a journal is greater than 4, then the mem-
ber grade of this journal equals 1; but if the number of references per year to a journal equals or is less than
4, then the membership grade of this journal equals the number of references per year to it divided by 4.01.



that there are no clear lines of demarcations between subject sets and
subsets. Librarians have long been aware of this characteristic of sci/
tech journals. In his standard work on serials, Osborn (1980, 268-288)
states that libraries can operate excellently without classifying their pe-
riodicals and satisfactorily without providing subject headings for them.
He advanced indexing as a better method of providing subject access to
journals.

However, while these practical implications of Bradford’s Law are
well understood, the same cannot be said for its probabilistic conse-
quences. As a result of this law, sci/tech journal distributions are most
often complex amalgams of various distributions resulting from the dif-
ferent underlying probabilities of the component subject subsets. This
phenomenon is also characteristic of distributions of other library mate-
rials. Given the fuzzy nature of these sets and subsets, these distribu-
tions are often not amenable to precise mathematical formulation.

The Calculation of Probability and the Normal Distribution

Probability is calculated by a mathematical equation called the prob-
ability density or probability mass function that determines what can be
described generically as the proportion of members of a given set that
have a specific characteristic. For example, this can be the proportion of
a set of coins that are heads or–in terms of the question under analy-
sis–the proportions of the sci/tech journal collection of the SML that in
1956 were externally loaned 0, 1, 2, 3, etc., times. A crucial element of
the equation is a numerical constant called the parameter, which can be
logically known a priori or estimated a posteriori from the data. Proba-
bility can be represented visually by means of a curve on a graph, on
whose X, or horizontal axis, are the measures of the characteristic and
on whose Y, or vertical axis, are the measures of the proportion or num-
ber of occurrences of this characteristic. Total probability is numeri-
cally defined as 1.00, and this number is assigned to the total area under
the mathematical curve. The probability of the characteristic is the pro-
portion or percent of the area under the curve that is above a defined
segment of the X axis.

These basics of probability will be demonstrated with the normal
distribution, which is graphically represented in Figure 2. The equa-
tion for the normal distribution has two parameters–the arithmetic
mean and the standard deviation. This equation results in some form of
the bell-shaped curve that is shown in Figure 2. Looking at the graph, it
can be seen that with the normal distribution the area under the curve on

44 SCIENCE & TECHNOLOGY LIBRARIES



the segment of the X axis between the mean and one standard deviation
above the mean is 34% of the total area under the curve and, therefore,
contains 0.34 of the observations or members of the set. If one turns to
Figure 1 with the bar chart of the frequency distribution of sci/tech jour-
nals by SML external loans in 1956 and mentally constructs a curve by
connecting the tops of the bars with lines, one can see by comparing
curves that this frequency distribution is nowhere near being repre-
sented by the normal distribution or any approximation to it.

The normal distribution was developed in the 18th and early 19th
century as a law of error in astronomy and geodesy. Eisenhart (1983,
530) defines laws of error as “probability distributions assumed to de-
scribe the distribution of the errors arising in repeated measurement of a
fixed quantity,” and he states that they had the purpose of demonstrating
the utility of taking the arithmetic mean of these measurements as a
good choice for the value of the magnitude of this quantity. This ex-
plains the shape of the normal distribution. The mean is the same as the
mode, or the point of the most frequently occurring value in a set of ob-
servations, and the symmetrical shape of the curve mandates that there
is a 50/50 chance of an observation being on either side of the mean.
During the 19th century, the normal distribution was thought to de-
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scribe not only the distribution of error but also of all physical and social
measurements. But this idea was refuted, and Snedecor and Cochran
(1989, 40 and 44-50) state that the single most important reason for use
of the normal curve is the central limit theorem, by which the distribu-
tion of the means of samples from even a non-normal population tends
to become normal as the size of the sample increases.

The Binomial Distribution

The normal distribution is a continuous distribution in that it de-
scribes the distribution of variables that can take on any value including
fractional ones. However, for the most part, library data consists of dis-
crete integer counts and therefore requires discrete or discontinuous
probability distributions. The basic ones of the latter type are the bino-
mial distribution and the Poisson distribution.

Of these two distributions the binomial is historically the most im-
portant one, as it was the first probability distribution from which all the
others were ultimately derived. The binomial distribution is based upon
the repeated drawing of samples of a given size s from a population con-
sisting of two classes (success-failure, yes-no, etc.). Besides the sample
size s, its density function has one other constant, the parameter p or
probability, which is the proportion of successes in the total population.
Concerning the other population class, the proportion of failures is des-
ignated by q, so that q = 1 � p and p + q = 1. The distribution itself is cal-
culated by the expansion of the binomial (p + q)^s. Of great importance
in the binomial distribution is the close connection of the arithmetic
mean with probability. The arithmetic mean is the size of the sample s
multiplied by the probability of success p, so that:

AVERAGE = s*p

This close connection caused Rietz (1927, 14-16) to equate the mean
with “the mathematical expectation of the experimenter.” It is also im-
portant to note for the discussion below that the variance and standard
deviation of a binomial distribution can be calculated by the following
two equations:

VARbinom = s*p*q
STDEVbinom = SQRT(s*p*q) = SQRT(VARbinom)

The binomial distribution will now be demonstrated with Urquhart’s
1956 SML external loan data on the a priori assumption that p = 0.5 or
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the probability of heads on the flipping of a fair coin. A major problem
of applying the binomial distribution to library use is that it requires
knowledge of not only the number of successes but also the number of
failures. However, while it is relatively easy to count the number of
times a journal has been loaned, it is not possible to count the number
of times a journal has not been loaned. This makes it difficult to de-
termine the size of the binomial sample s and to estimate the param-
eter p. One way around this difficulty is to utilize the technique
suggested by Grieg-Smith (1983, 57-58) and recommended by Elliott
(1977, 17). The technique requires that one first define the size of the bi-
nomial sample s by determining the maximum possible number of oc-
currences for any given member of the set. The journal most frequently
borrowed by outside organizations from the SML in 1956 was the Pro-
ceedings of the Royal Society of London (Series A), which accounted for
382 external loans, and it is logical to use this number for the size of the
binomial sample s. From the perspective of binomial theory, each jour-
nal now becomes a sample of 382 possible loans. Having done this, it is
now possible to make the following calculations:

Number of SML Journals (n) = 18,000
s = 382
p = 0.5

q = 1 � 0.5 = 0.5
Total Possible Loans (Tpos) = n*s = 18,000*382 = 6,876,000

Total Actual Loans (Tact) = Tpos*p = 6,876,000*0.5 = 3,438,000
AVERAGE = Tact/n = 3,438,000/18,000 = 191

AVERAGE = s*p = 382*0.5 = 191
VARbinom = s*p*q = 382*0.5*0.5 = 95.51

STDEVbinom = SQRT(VARbinom) = SQRT(95.51) = 9.77

The two ways of calculating AVERAGE demonstrate the close con-
nection of the arithmetic mean with probability. To provide a further
understanding of the binomial distribution, 382 and 0.5 were respec-
tively used as the constants s and p in the binomial density function, and
the resulting distribution of journals by number of external loans was
both calculated and graphed. Figure 3 graphs the binomial distribution
of titles at p = 0.5 over each possible number of 1956 SML external
loans from 0 to 382. A look at Figure 3 in conjunction with Figure 2 il-
lustrates the close connection of the binomial distribution with the nor-
mal law of error, as both frequency curves have the same symmetrical,
bell-shaped form. According to Snedecor and Cochran (1989, 117-119
and 130), as s increases, the discrete binomial distribution approximates
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more and more the continuous normal distribution. The size of the s re-
quired for this approximation is dependent on the value of p, being
smallest at p = 0.5, where the approximation is good with s as low as 10.

At p = 0.5, all 18,000 titles in the SML collection would have concen-
trated in the Loan Class (100 to 382), which is the upper level of the
Super High Loan Class in Section 2 of Table 2. However, a glance at
Tables 1-2 and Figure 1 demonstrates that this was obviously not the
case, because in reality an estimated 16,749 titles or 93.05% were con-
centrated in the Low Loan Class (0 to 9). Moreover, a comparison of the
observed set mean of 2.96 loans per title to the theoretical set mean of
191 loans per title at p = 0.5 is proof that the actual overall probability of
titles being loaned was extremely low. Using the same techniques as
above but basing ourselves on the total number of 53,216 external loans
actually observed, we can calculate a posteriori the binomial character-
istics of the distribution of sci/tech journal titles by 1956 SML external
loans thus:

Number of SML Journals (n) = 18,000
s = 382

Total Possible Loans (Tpos) = n*s = 18,000*382 = 6,876,000
Total Observed Loans (Tobs) = 53,216

p = Tobs/Tpos = 53,216/6,876,000 = 0.01
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q = 1 � p = 1 � 0.01 = 0.99
AVERAGE = Tobs/n = 53,216/18,000 = 2.96

AVERAGE = s*p = 382*0.01 = 2.96
VARbinom = s*p*q = 382*0.01*0.99 = 2.93

STDEVbinom = SQRT(VARbinom) = SQRT(2.93) = 1.71

These calculations demonstrate that in 1956 the overall probability of
SML external loans was only 0.01.

The Poisson Distribution

As probability becomes extremely low, the binomial distribution is
transformed into the Poisson distribution. The latter distribution is the
most important probability distribution for modeling library use. Its im-
portance in this respect arises not only from its characteristics that make
it suitable for this purpose but also from its overall importance. Thus,
R. A. Fisher (1970, 54), one of the founders of modern inferential sta-
tistics, ranked the normal distribution as the most important of the
continuous distributions and the Poisson as the most important of the
discontinuous distributions. The name of this distribution is taken from
that of Siméon Denis Poisson, who is generally credited with being the
first to derive this distribution as a limit to the binomial in an 1837 book
on judicial decisions.

What makes the Poisson distribution particularly fit for modeling li-
brary use are the following characteristics. First, it is a discontinuous
distribution, and library use is measured by integer counts. Second, it
arises as a limit to the binomial as p becomes very small, and the proba-
bility governing library use is usually very small. As has been seen
above, the binomial p of external loans for all sci/tech journals in the
SML collection in 1956 was 0.01, and this probability was much re-
duced in respect to individual titles. For example, the probability of the
most highly loaned title, the Proceedings of the Royal Society of London
(Series A), was 0.00006. Third, the process by which the Poisson arises
is suited to library use. Thus, whereas the binomial distribution is based
upon the repetitive taking of samples of a given size containing both
successes and failures, the Poisson distribution is based on mean rate of
occurrence–technically called lambda (λ)–over some defined contin-
uum such as time or space. With library use, space can be defined in
terms of either individual titles or subject classes. Lambda is the only
parameter of the Poisson density function, and it is much easier to esti-
mate from library use data than the binomial p. With the binomial p, one
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has to make an estimate not only of the number of times items were used
but also the number of times items were not used, whereas the Poisson
lambda can be estimated by simply counting the number of uses over
some observation period and then dividing by the number of items sub-
ject to use. The Poisson’s versatility in respect to library use is enhanced
by the fact that, when p is small, the binomial and the Poisson are equiv-
alent and can be substituted for each other. A key feature of the Poisson
distribution is that lambda is equal to both the mean and the variance.

This is expressed by the following identity:

λ = AVERAGE = VAR

To demonstrate the Poisson in terms of the distribution of sci/tech
journals by 1956 SML external loans, the mean of these loans per ti-
tle–2.96–was utilized as lambda in the Poisson density function. This
mean was selected to make the Poisson equivalent to the binomial with
p = 0.01. The resulting frequency distribution of these titles was tabu-
lated in terms of Urquhart’s 1956 SML external loan classes presented
in Table 1, and the tabulation is given in Table 6 next to the observed
distribution of titles across these classes. This hypothetical Poisson dis-
tribution is graphed by Figures 4A and 4B above in two different ways.
Figure 4A shows the correct theoretical shape of the distribution,
whereas Figure 4B utilizes the same bar chart structure by Urquhart’s
classes as Figure 1 to facilitate comparison of the hypothetical Poisson
distribution to the distribution actually observed in 1956. Comparing
the tabulations of the hypothetical Poisson distribution against the ob-
served distribution in Table 6 and Figure 4B against Figure 1 reveals
that the Poisson distribution differs from the observed frequency distri-
bution in two key ways: (1) the observed number of titles in Loan
Classes 2, 3, and 4 around the mean of 2.96 is much lower than the num-
ber predicted by the Poisson; and (2) the observed number of titles in the
loan classes at the two extremes–0 as well as 10 and above–is much
higher than the number predicted by the Poisson. It should be noted that
equivalent tabulations and graphs of the hypothetical binomial distri-
bution with p = 0.01 were virtually identical to those of the Poisson with
λ = 2.96. Moroney (1956, 127) counsels that the Poisson distribution
can always be used as an approximation to the binomial distribution
whenever p in the binomial is small with the approximation becoming
better as p approaches zero.
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The Stochastic Processes of Library Use:
Pearson and Asymmetric Distributions

The poor fit of both the binomial and the Poisson distributions to the
frequency distribution of sci/tech journals by 1956 external loans indi-
cates that there are stochastic or random processes affecting library use
which limit the applicability of these distributions. Since the Poisson is
a special case of the binomial, the requirements for these distributions
are similar. Thus, in respect to the binomial, Rietz (1927, 24) states two
requirements: (1) p must remain constant from sample to sample; and
(2) the samples must be mutually independent in that the results of a
sample should not depend in any significant degree on the results of pre-
vious samples. As for the Poisson distribution, Elliott (1977, 22) lists
four such requirements: (1) p must be constant and small; (2) the num-
ber of successes per sampling unit must be well below the maximum
number that can occur in a sampling unit; (3) the occurrence of a suc-
cess must not increase or decrease the probability of another success;
and (4) the samples must be small relative to the population. Library use
violates these requirements in two important ways. The first may be cat-
egorized as “heterogeneity,” namely, that library collections are com-
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TABLE 6. Comparison of Observed Frequency Distribution of Scientific Journals
over 1956 Science Museum Library (SML) External Loan Classes to Hypo-
thetical Poisson and Negative Binomial Distributions with Parameters Estimated
A Posteriori from 1956 SML External Loan Data

Loan Class Observed Title
Frequency Distribution

Hypothetical Poisson
Distribution

Hypothetical Negative
Binomial Distribution

0 12,368 936 12,368

1 2,190 2,767 1,357

2 791 4,091 728

3 403 4,031 494

4 283 2,980 370

5 to 9 714 3,177 1,060

10 to 19 541 18 852

20 to 29 229 0 356

30 to 39 136 0 179

40 to 49 92 0 97

50 to 99 193 0 128

100 to 382 60 0 13

SUM 18,000 18,000 18,000
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prised of elements, whose probabilities of being read wildly differ from
each other. The other may be defined as “contagion” in the sense that li-
brary uses are not independent, because the use or non-use of an item af-
fects not only its own future use or non-use but also that of other items.

Karl Pearson (1894; 1895; 1901; 1916) analyzed the stochastic pro-
cesses causing the asymmetric frequency distributions of the type domi-
nating library use in a series of four memoirs. In the second of these
memoirs, Pearson (1895, 344-345) pointed out that asymmetric fre-
quency curves may arise from two distinct classes of causes. The first
such class is when the material measured may be heterogeneous in that
it consists of a mixture of two or more homogeneous materials. In li-
brary terms, such a curve would result from the use of materials in a set
comprised of two or more subject subsets with different underlying
probabilities. Pearson (1894) had dealt with this type of asymmetric dis-
tribution in his first memoir, proving that asymmetric distributions were
not solely a function of such mixed sets but could arise even with homo-
geneous material.

In his second memoir, Pearson (1895, 344) began his analysis of the
other class of asymmetric curves that arise “in the case of homogeneous
material when the tendency to deviation on one side of the mean is un-
equal to the tendency to deviation on the other side.” In this and the suc-
ceeding memoirs, Pearson mathematically modeled this second type of
curve with a system of twelve asymmetric frequency curves, which he
derived off the hypergeometrical series Pearson (1916, 429-430) stated
that he deliberately chose this series because it violated the three funda-
mental axioms of the normal distribution: (1) the equality in frequency
of plus and minus errors of the same magnitude from the mean is re-
placed by an arbitrary ratio; (2) the number of contributory causes is no
longer indefinitely large; and (3) the contributions of these causes are no
longer independent but are correlated. The last condition incorporated
the concept of contagion through being a direct violation of the bino-
mial and Poisson requirement for independence of trials. Pearson dem-
onstrated that his asymmetric curves better described the types of
distributions found in reality than the normal distribution, which he
found of little use in this respect. Of Pearson’s asymmetric curves, three
of the most important proved to be the following: Types I and VI estab-
lishing the bases for two forms of the beta distribution; and Type III,
also known as the gamma distribution, which is the one best describing
the shape of the frequency distributions dominating library use.

As part of his work with distributions, Pearson (1900) developed a
method known as the chi-squared goodness of fit test for determining

Stephen J. Bensman 53



how well an actual frequency distribution matches a theoretical frequency
distribution. This test is based upon the chi-squared distribution, which
is a particular case of his Type III or gamma distribution. R. A. Fisher
(1966, 195-196) identified the essence of Pearson’s chi-squared test as a
comparison of the variance estimated from a sample with the true vari-
ance.

As a result of Pearson’s work, it is possible to summarize the problem
of analyzing the asymmetric distributions dominating library use under
the following points. First, such distributions may arise not only from
heterogeneous sets comprised of various subsets with differing proba-
bilities but also from homogeneous sets whose individual elements may
have differing probabilities. Second, the underlying causes may be cor-
related, and, therefore, a contagious process may be taking place,
whereby the occurrence of an event affects its probability of reoccur-
rence. And, third, the amount of variance is one of the key characteris-
tics that distinguish one type of distribution from another.

The Lexian System of Distributions

The pioneering work on Pearson’s first class of asymmetric distribu-
tions–those arising from a mixture of two more homogeneous materi-
als–was done by the German economist, Wilhelm Lexis, who expounded
his theories in a series of articles and monographs published in the pe-
riod 1875-1879. Two of the most cogent English expositions of Lexis’
ideas were written by Rietz (1924) and A. Fisher (1922, 117-126).

The basis of Lexis’ ideas was to test for the structure of a set by com-
paring its actual variance to its theoretical binomial variance through
the Lexis Ratio (L). This is done by first calculating the standard devia-
tion (STDEV) directly off the data as was demonstrated in Table 7 then
its theoretical binomial standard deviation (STDEVbinom), and finally
dividing the direct standard deviation by the theoretical binomial stan-
dard deviation thus:

L = STDEV/STDEVbinom

Both Rietz (1924) and A. Fisher (1922) use urn models to demonstrate
set structure, and this practice will be followed here.

The urn model for the binomial distribution can be a single urn filled
with black and white balls in constant proportions, where the drawing of
a white ball is considered a success. Samples are drawn from this urn
and replaced so that the proportion or probability of white balls from
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sample to sample remains constant and the results of one sample does
not affect the results of another sample. Under these conditions–homo-
geneity and independent trials–the Lexis Ratio should equal or approxi-
mate 1, indicating that the actual variance directly calculated from the
data equals its theoretical binomial variance. Given the binomial’s close
relationship to the normal distribution, a Lexis Ratio of 1 indicates that
the dispersion around the mean is primarily due to random error.

However, a Lexis Ratio greater than 1 means that the actual variance
is greater than the theoretical binomial variance, and Lexian theory di-
vides the variance into two components: the “ordinary or unessential”
binomial component and the “physical” component (Rietz 1924, 86).
The binomial component may be defined as that variance due to random
error, whereas the excess variance is interpreted as resulting from the
differing probabilities of the component subsets and is a sign of the
Lexis distribution. A model for the Lexis distribution is a number of
separate urns each containing different proportions of black and white
balls. The urns thus represent subsets with different probabilities of
white balls. Samples are fully drawn from the various urns and replaced
in rotation so that the probabilistic heterogeneity of the urns is empha-
sized. Replacement of the samples maintains independence of trials.
This is actually a good model for the binomial sampling of journal use.
Under it, journals can be conceptualized as use samples of size s drawn
fully in rotation from urns with differing proportions of uses and
non-uses.

According to Lexian theory, the variance of a Poisson distribution is
less than the corresponding variance of a binomial, so that a Lexis Ratio
significantly less than 1 is indicative of the former distribution. The urn
model for the Poisson distribution is the same as that for the Lexis distri-
bution, in that it, too, consists of urns with differing proportions or prob-
abilities of white balls. However, instead of the samples being fully
drawn from the urns in rotation, they are constructed by taking 1 ball at a
time from each urn, thereby randomizing the heterogeneous probabili-
ties. It should be emphasized that a variance lower than the theoretical
binomial variance is not necessarily a sign of the Poisson. Rietz (1924),
for example, utilized binomial distributions with an overall p = 0.5 to
demonstrate that randomizing the heterogeneous probabilities in the
above fashion significantly reduces the variance below that theoreti-
cally expected with the binomial. The tendency of randomizing the
probabilities to reduce the amount of variance plays an important role in
a statistical law that is of crucial importance for the modeling of library
use–Bortkiewicz’s Law of Small Numbers.
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Ladislaus von Bortkiewicz was a student of Lexis, and he is best
known for uncovering the importance of the Poisson distribution. Ac-
cording to Haight (1967, 115), although Poisson discovered the mathe-
matical formula, Bortkiewicz discovered the probability distribution.
His Law of Small Numbers is so closely connected with the Poisson dis-
tribution that it is often confused with it, but this is a misunderstanding
of the Lexian bases of his work. Bortkiewicz set forth his law in a pam-
phlet published in 1898, and this pamphlet has been analyzed by Winsor
(1947), who modernized the mathematical notation and translated key
sections of it. To develop his law, Bortkiewicz analyzed the rate soldiers
were kicked to death by horses in 14 Prussian Army corps in the 20-year
period 1875-1894. These corps had different probabilities of soldiers
being killed, so that the mean rate of deaths–or the lambda–differed
from corps to corps. Nevertheless, when Bortkiewicz aggregated the
data for all the corps, he found that the resulting frequency distribution
closely fitted the Poisson. This caused him to formulate his Law of
Small Numbers, which can be summarized simply in the following
manner: If the field of observation is restricted to a set defined by infre-
quent occurrences, the resulting frequency distribution will fit the Pois-
son, whatever the differing probabilities of the elements or subsets
comprising that set. The main requirement is that the number of occur-
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TABLE 7. Comparison of Lexis Ratio of Observed Frequency Distribution of
Scientific Journals over 1956 Science Museum Library (SML) External Loans
with Lexis Ratios of Hypothetical Poisson and Negative Binomial Distributions
with Parameters Estimated A Posteriori from 1956 SML External Loan Data

Statistical Measures

Observed Title
Frequency

Distribution
Hypothetical Poisson

Distribution
Hypothetical Negative
Binomial Distribution

Direct Standard
Deviation from Data

11.59 1.72 8.93

Theoretical Binomial
Standard Deviation

1.71 1.71 1.71

Lexis Ratio 6.77 1.00 5.21

Significant at 0.05
Level

Yes No Yes

Interpretation of Measures: (1) if the Lexis ratio is 1 or very near to 1 and not statistically significant, the ac-
tual variance approximates theoretical binomial variance; (2) if the Lexis ratio is below 1 and statistically
significant, the actual variance is less than theoretical binomial variance; and (3) if the Lexis ratio is above 1
and statistically significant, the variance higher than theoretical binomial variance, indicating a Lexis distri-
bution.



rences be small out of a large population, and the more this requirement
is met, the better the fit to the Poisson. It should be noted that this
method of restricting of the field of observation has the effect of ran-
domizing the probabilities since the occurrences are happening haphaz-
ardly over elements or subsets with differing probabilities, and Lexian
theory dictates that the actual variance should therefore be less than the
theoretically expected one.

Bortkiewicz’s Law of Small Numbers has enormous implications for
the evaluation and management of library collections, for it means that
if the set is restricted to those items manifesting low use, no matter what
the items or their subject class, one can expect not only that the set will
have a low overall mean rate of use but also that the use of any compo-
nent of this set will not deviate very far from this mean.

Lexian analysis was applied to 1956 SML external loans, and the re-
sults are presented in Table 7. Binomial theory required that all 18,000
journals be considered individual urns with differing probabilities of
external loans, from which samples of 382 possible external loans are
fully drawn in rotation. The theoretical binomial standard deviation of
this journal set was calculated to be 1.71 above (p. 19-20). In respect to
the distribution actually observed in 1956, the direct standard deviation
was found to be 11.59 utilizing the method demonstrated in Table 1.
These values yield the following Lexis Ratio for the observed distribu-
tion:

L = STDEV/STDEVbinom = 11.59/1.71 = 6.77

The distribution of scientific journals by 1956 SML external loans
was thus a Lexis one, and it is possible to hypothesize that one reason
for this excess variance is that Urquhart aggregated the loan figures for
the SML journal collection as a whole instead of presenting the loan
data in terms of well defined subject subsets, thereby controlling for one
source of probabilistic heterogeneity. The direct standard deviation was
also calculated for the Poisson distribution, whose λ parameter was esti-
mated a posteriori from the 1956 SML external loan data, and it was
1.72. Dividing it by the theoretical binomial standard deviation of 1.71
results in a Lexis Ratio of 1 indicating the binomial distribution. This
experiment demonstrates that Lexian theory is rather problematic on the
distinction between binomial and the Poisson, for at the low level of
probability, where the Poisson distribution arises, the two distributions
tend to be equivalent.
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Heterogeneity vs. Contagion

Probabilistic heterogeneity in the use of sci/tech journals and other li-
brary materials involves two basic, interacting factors. First, there is the
Lexian factor of the various subject classes having different probabili-
ties of being used. This factor is inherent in library use due to Bradford’s
Law of Scattering, which dictates that virtually every subject set of li-
brary materials will contain subject subsets with different underlying
probabilities of being read. Second, there is the Pearsonian factor of the
probabilistic differences of members of homogeneous subject sets be-
ing used due to such causes as importance or quality, size, age, com-
pleteness, language, etc. The main vehicle for modeling probabilistic
heterogeneity has been the compound distribution, which is a distribu-
tion that results when the parameter–p in the binomial case, λ in the
Poisson case–has its own distribution sometimes termed the “mixing
distribution.” One of the chief uses of Pearson’s asymmetric distribu-
tions has been to serve as such mixing distributions.

Properly conceived, the Lexis distribution is a mixture of binomial
distributions, and it was the forerunner of the compound binomial dis-
tribution. Moran (1968, 76), as well as Johnson and Kotz (1969, 79), de-
scribe the beta distribution, which was pioneered by Pearson, as the
“natural” mixing distribution for p in the compound binomial distribu-
tion. This form of the compound binomial is sometimes named the beta
binomial distribution. However, for a number of reasons, it is the com-
pound Poisson distribution that is more applicable for modeling library
use. The most important compound Poisson distribution is the negative
binomial distribution (NBD). One reason for the importance of the
NBD is that it results not only from the stochastic process of heteroge-
neity but also from that of contagion. The heterogeneity form of the
NBD is a compound Poisson model, which was developed by Green-
wood and Yule (1920) on the basis of industrial accidents among Brit-
ish female munitions workers during World War I.

The Greenwood and Yule model can be explained simply in the fol-
lowing manner. Each female worker was considered as having a mean
accident rate over a given period of time or her own lambda. Thus, the
accident rate of each female worker was represented by a simple Pois-
son distribution. However, the various female workers had different un-
derlying probabilities of having an accident and therefore different
lambdas. Greenwood and Yule posited that these different lambdas
were distributed in a skewed fashion described by Pearson’s Type III or
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gamma distribution, and therefore, certain workers had a much higher
accident rate than the others and accounted for the bulk of the accidents.
They found that this model fitted the data very well. Given its construc-
tion, the Greenwood and Yule form of the negative binomial distribu-
tion is called the gamma Poisson model. This form of the negative
binomial distribution can be considered as modeling the probabilistic
heterogeneities of members of a homogeneous set, and it used Pearson’s
gamma distribution as the mathematical description of accident prone-
ness.

Eggenberger and Pólya (1984) formulated the contagious form of the
NBD in a 1923 paper that analyzed the number of deaths from smallpox
in Switzerland in the period 1877-1900. They derived their model off an
urn scheme that involved drawing balls of two different colors from an
urn and not only replacing a ball that was drawn but also adding to the
urn a new ball of the same color. In this way, numerous drawings of a
given color increased the probability of that color being drawn and de-
creased the chance of the other color being drawn.

In a key paper, Feller (1943) stated that Eggenberger and Pólya had
independently rediscovered a distribution originally found by Green-
wood and Yule. He then analyzed the different stochastic bases of the
Pólya-Eggenberger and Greenwood-Yule derivations of the negative bi-
nomial. According to Feller, the Pólya-Eggenberger form was a product
of “true contagion,” because each favorable event increases (or de-
creases) the probability of future favorable events, while the Green-
wood-Yule model represented “apparent contagion,” since the events
are strictly independent and the distribution is due to the heterogeneity
of the population. Given that Greenwood-Yule and Pólya-Eggenberger
reached the NBD on different stochastic premises–the first on heteroge-
neity, the second on contagion–Feller posed the conundrum that one
therefore does not know which process is operative when one finds the
negative binomial, and he pointed out that this also applies to other
types of contagious distributions. Feller’s conundrum certainly holds
true for library use. Thus, one does not really know whether a given sci-
entific journal circulates more than others, because it is qualitatively or
quantitatively different, because patrons have used and recommended
it, or because these two factors are operating interactively.

To test the applicability of the NBD as a model of library use, one such
distribution was constructed by deriving its parameters off Urquhart’s
1956 SML external loan data. This probability distribution has two pa-
rameters: the arithmetic mean and a negative exponent s, which Elliott
(1977, 23) describes as a measure of the excess variance in a population.
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The mean is estimated in the usual fashion, and the method of the ob-
served proportion of zeros of Anscombe (1949; 1950) was utilized to
estimate s. Once again, the resulting frequencies were tabulated by
Urquhart’s 1956 SML external loan classes, and these tabulations were
placed in Table 6 together with the other distributional tabulations for
comparative purposes. The NBD frequencies were also graphed in the
same two ways as before, i.e., by possible number of 1956 external
loans from 0 to 382 (Figure 5A) and by Urquhart’s 1956 SML external
loan classes (Figure 5B). Figure 5A showing the actual shape of the
NBD distribution is overwhelmed by the huge zero class, but it does
show that the NBD differs from the Poisson distribution with its λ param-
eter estimated from the data by being more compressed against the left
vertical Y axis. Inspection of Table 6 and comparison of Figure 5B to Fig-
ure 1, which is the graph of the observed distribution by Urquhart’s loan
classes, demonstrate that the negative binomial is a fairly good model of
library use. The most striking similarities are the high concentration of
titles in the loan classes below the mean of 2.96 and the long tail extend-
ing to the right that contains the journals accounting for the vast bulk of
the external loans. However, the fit of the NBD to the observed distribu-
tion is not statistically precise, and there are two main reasons for this.
First, the estimates of both parameters are distorted by the rough ap-
proximation used for the number of journals in the zero class. This is a
common problem in library analyses, where most distributions are trun-
cated on the left due to the difficulties in determining the size of the zero
class. Second, due to Urquhart’s aggregation of all journals into one dis-
tribution regardless of subject class, we are not dealing with a single dis-
tribution but a composite of many distributions resulting from the
different probabilities of the component subject subsets. Proof of this is
seen in Table 7, which shows that the Lexis Ratios of the observed dis-
tribution and the hypothetical negative binomial are both significantly
above 1–6.77 for the observed, 5.21 for NBD. The complications
caused by this multiplicity of subject subsets are increased due to their
interactions resulting from their fuzziness and lack of clear demarcating
lines. However, as will be seen, mathematical precision is really not re-
quired for the practical application of probability models to the evalua-
tion and management of library collections. The main role of such
models should be to help determine what are the underlying stochastic
processes and therefore the consequences resulting from any given de-
cision.
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The negative binomial distribution has found numerous applications
in the biological and social sciences. One of its most important biologi-
cal applications is in ecology, where Elliott (1977, 50-51) describes it as
probably the most useful mathematical model for distributions of spe-
cies within given geographic areas. In respect to the social sciences, the
NBD serves as the model of the zero sum game. This utilization can be
demonstrated with Urquhart’s 1956 SML external loan data in the fol-
lowing manner. For any given period–say, the year 1956–there can be
only so many external loans. If a given journal has a greater probability
being loaned, then it can achieve its higher loan rate only at the expense
of other journals having a lower or even zero loan rate. The higher the
probability of certain journals for being loaned, the lower must be the
probability for other journals of being loaned. This results in what is
technically called “over-dispersion” or the dispersion of journals away
from the mean to both extremes of the distribution. Such a phenomenon
is clearly visible in both the observed frequency distribution and the hy-
pothetical NBD with the heavy concentration of titles in the zero class
and the long tail to the right. In this respect, both the observed distribu-
tion and negative binomial distributions stand in sharp contrast to the
hypothetical Poisson distribution, where the journals are heavily con-
centrated in the loan classes around the mean and there is no long tail to
the right. Another name for “over-dispersion” in the social and informa-
tion sciences is the “Matthew Effect.” This term is derived from the gos-
pel of St. Matthew (13:12), which states: “For whoever has, to him shall
more be given, and he shall have an abundance; but whoever does not
have, even what he has shall be taken away from him.”

Indices of Dispersion

In his classic textbook, R. A. Fisher (1970, 57-61, 68-70) presented
two tests–one for the binomial, the other for the Poisson–that utilize
Pearson’s chi-squared distribution as an index of dispersion. These tests
comprise the easiest ways to determine the type of probability distribu-
tion and stochastic processes governing a set of data. An examination of
Fisher’s equation for chi-squared in his binomial test reveals it to be
based upon a comparison of the actual variance of a set of data to its the-
oretical binomial variance. The relationship to the Lexis Ratio is obvi-
ous, and Fisher himself states (p. 80), “In the many references in
English to the method of Lexis, it has not, I believe, been noted that the
discovery of the distribution of [chi-squared] in reality completed the
method of Lexis.” He then outlined a method by which a given
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chi-squared could be transformed into its equivalent Lexis Ratio.
Fisher’s equation for chi-squared in his index of dispersion test for the
Poisson is based upon a comparison of the actual variance of a set to the
arithmetic mean of the set. However, since under the conditions of the
Poisson, the mean is equal to the variance, this test is also a comparison
of actual variance to the theoretical variance. Given this identity, the ra-
tio of the variance to the mean serves for the Poisson the same function
as does the Lexis Ratio for the binomial, i.e., indicates the hypothesized
distribution, if equal or approximate to 1.

Fisher’s index of dispersion tests were further developed by Cochran
(1954), who placed them within the system of hypothesis testing which
is the standard method in statistics today. This system involves null and
alternative hypotheses. Given Fisher’s linking of his binomial index of
dispersion test with the Lexis Ratio, one can define the hypotheses for
his binomial index of dispersion test in accordance with Lexian theory
and its further development through the compound binomial distribu-
tion. This results in a two-tailed test. The null hypothesis is the binomial
distribution. If the actual variance is significantly less than the theoreti-
cal binomial variance, the alternative hypothesis is that the distribution
has the subnormal dispersion indicative of the Poisson distribution; if
the actual variance is significantly greater than the theoretical binomial
variance, the alternative hypothesis is that the distribution has the super-
normal dispersion characteristic of the Lexian distribution or a com-
pound binomial such as the beta binomial. Thus, Fisher’s binomial
index of dispersion test can be considered from the Lexian viewpoint a
test for whether a set is homogeneous or composed of subsets governed
by differing probabilities. The latter case is the most frequent one in li-
brary use, where Bradford’s Law of Scattering mandates that each sub-
ject set will be comprised of subsets from various subject fields.

The hypotheses for Fisher’s Poisson index of dispersion test have
been defined by Elliott (1977, 40-44). In the system presented by him,
the null hypothesis is the Poisson distribution. If the variance is signifi-
cantly less than the mean, Elliott defines the alternative hypothesis as “a
regular distribution”; if the variance is significantly greater than the
mean, he states the alternative hypothesis as “a contagious distribu-
tion.” According to Elliott (1977, 46 and 50-51), the positive binomial
distribution is the approximate mathematical model for a regular distri-
bution, whereas the negative binomial is the most useful mathematical
model for the diverse patterns of contagious distributions. Fisher’s in-
dex of dispersion test for the Poisson is more applicable to library use
than his index of dispersion test for the binomial. The main reason is
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that his binomial test requires an estimation of the parameter p–a com-
plex task due to the inability to count non-uses–whereas his Poisson test
is based upon the parameter lambda or mean rate of use that is easily es-
timated from the observed rate of use. Not only is Fisher’s Poisson test
more easily applied to library use, it has the further advantage that at the
low level of probabilities governing library use the Poisson is equiva-
lent to the binomial, thereby making his Poisson test also a test for the
binomial. Therefore, the Poisson test captures the effects of heterogene-
ity, whether it be the Lexian differences in the probability of subject
subsets or the Pearsonian differences in the probability of members of
homogeneous subject sets. Moreover, given Feller’s conundrum, Fisher’s
Poisson index of dispersion test serves also as a test for the operation of
contagion.

To illustrate Fisher’s Poisson index of dispersion test, the ratio of the
variance to the mean was calculated for the actual distribution of scien-
tific journals by 1956 SML external loans as well as the hypothetical
Poisson and negative binomial models of this distribution. The signifi-
cance of these ratios was determined with Fisher’s test. Table 8 presents
the results. Here it can be seen that both the actual distribution and the
hypothetical negative binomial have variance-to-mean ratios signifi-
cantly above one–45.42 for the former, 26.95 for the latter–whereas the
hypothetical Poisson distribution does not, proving that the actual distri-
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TABLE 8. Comparison of Variance-to-Mean Ratio of Observed Frequency Dis-
tribution of Scientific Journals over 1956 Science Museum Library (SML) Exter-
nal Loans with Variance-to-Mean Ratios of Hypothetical Poisson and Negative
Binomial Distributions with Parameters Estimated A Posteriori from 1956 SML
External Loan Data

Statistical Measures
Observed Title

Frequency Distribution
Hypothetical Poisson

Distribution

Hypothetical
Negative Binomial

Distribution

Mean 2.96 2.96 2.96

Variance 134.29 2.96 79.69

Variance-to-Mean
Ratio

45.42 1.00 26.95

Significant at 0.05
Level

Yes No Yes

Interpretation of Measures: (1) if the variance-to-mean ratio is 1 or very near to 1 and not statistically signifi-
cant, the distribution is the Poisson; (2) if the variance-to-mean ratio is below 1 and statistically significant,
the distribution is the binomial; and (3) if the variance-to-mean ratio is above 1 and statistically significant,
the distribution is the negative binomial or one similarly resulting from inhomogeneity and contagion.



bution is better modeled by the negative binomial than by the Poisson.
Comparison of Table 8 to Table 7 containing the results of the Lexis Ra-
tio tests provides interesting insights. First, the results of the vari-
ance-to-mean ratio test validate the findings of the Lexis Ratio test that
also demonstrated that the NBD is the better model of the actual distri-
bution than the Poisson. Second, whereas the Lexis test indicates that
hypothetical Poisson distribution is a binomial distribution due to the
ratio being 1, the variance-to-mean test shows the hypothetical Pois-
son distribution to be a Poisson distribution, because once again the
ratio is 1. This is proof of the equivalency of the binomial and Poisson
distributions at the low levels of probability governing library use.
Taken all together, these tests demonstrate the operation of both sto-
chastic processes of heterogeneity and contagion in the observed distri-
bution, which was affected by probabilistic heterogeneity between
subject subsets as well as within subject subsets, where the loan or
non-loan of a journal affected its later probability of loan or non-loan.

CONCLUSION

Urquhart’s analysis of the 1956 loans of the Science Museum Library
(SML) to outside organizations embodied two major advances. The
first was distributional and pertained to the history of science as a
whole. This aspect of Urquhart’s work has been discussed in detail in
two articles by Bensman (2000; 2005). During the 19th century, statisti-
cal analysis was based upon the normal paradigm, according to which
the distributions of all phenomena are governed by the normal law of er-
ror. The late 19th century witnessed a scientific revolution, which led
to the discovery that, on the contrary, many if not most phenom-
ena–but particularly biological and social ones–have distributions that
are highly and positively skewed. Two key figures in this scientific rev-
olution were Wilhelm Lexis and Karl Pearson. Britain became the pri-
mary locus of the revolution due to Darwinism that stimulated the
development of modern inferential statistics in this country. From this
perspective, the studies conducted by Bradford and Urquhart at the
SML must be viewed as extensions of this scientific revolution, because
these studies were among the first to demonstrate that the probability
distributions governing library and information science are also for the
most part highly and positively skewed.

The second advance was conceptual and concerned specifically li-
braries. It resulted from Urquhart’s focus on supralibrary use and must
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be counted as Urquhart’s original contribution to library and informa-
tion science. The conceptual breakthrough was that there is no sharp
distinction between supralibrary use and intralibrary use. As a result of
this, in terms of the usage of their materials, all libraries function as part
of a unified distributional system. Although this may seem a simple in-
sight, it has manifold and complex ramifications. The next two parts of
this paper will analyze these ramifications in respect to a central docu-
ment delivery library and all the other libraries supported by such a li-
brary.
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