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This paper has a dual character dictated by its twofold
purpose. First, it is a speculative historiographic essay
containing an attempt to fix the present position of li-
brary and information science within the context of the
probabilistic revolution that has been encompassing all
of science. Second, it comprises a guide to practitioners
engaged in statistical research in library and information
science. There are pointed out the problems of utilizing
statistical methods in library and information science
because of the highly and positively skewed distribu-
tions that dominate this discipline. Biostatistics are in-
dicated as the source of solutions for these problems,
and the solutions are then traced back to the British
biometric revolution of 1865–1950, during the course of
which modern inferential statistics were created. The
thesis is presented that science has been undergoing a
probabilistic revolution for over 200 years, and it is
stated that this revolution is now coming to library and
information science, as general stochastic models re-
place specific, empirical informetric laws. An account is
given of the historical development of the counting dis-
tributions and laws of error applicable in statistical re-
search in library and information science, and it is
stressed that these distributions and laws are not spe-
cific to library and information science but are inherent
in all biological and social phenomena. Urquhart’s Law is
used to give a practical demonstration of the distribu-
tions. The difficulties of precisely fitting data to theoret-
ical probability models in library and information science
because of the inherent fuzziness of the sets are dis-
cussed, and the paper concludes with the description of
a simple technique for identifying and dealing with the
skewed distributions in library and information science.
Throughout the paper, emphasis is placed on the rele-
vance of research in library and information science to
social problems, both past and present.

Introduction

This paper has a dual character dictated by its twofold
purpose. First, it is a speculative historiographic essay, in
which I attempt to describe the present state of library and
information science in terms of the overall development of
science. To do this, I connect the history of library and

information science with the history of probability and
statistics. Second, the paper is intended to serve as a prac-
tical guide to persons doing statistical research in library
and information science. Thus, the components comprising
the duality of this paper are closely interconnected.

I came to this topic as a result of recently completed
research (Bensman, 1996; Bensman & Wilder, 1998) on the
market for scientific information. In this research, I wanted
to solve what seemed a simple problem: What role does
scientific value play in the price libraries pay for scientific
journals? To solve this problem, I had to use parametric
statistical techniques such as correlation and regression, and
these techniques immediately confronted me with what
seemed to be an extremely difficult problem. These tech-
niques are based on the assumption of the normal distribu-
tion, whereas library and information science data do not
conform to the normal distribution but are dominated by
horrendously skewed distributions. I realized that there is a
need to connect the information science laws with the
probability distributions, on which statistics are based, in
some easily understandable manner, as an aid to persons
conducting statistical investigations of the problems afflict-
ing libraries. This need is becoming especially pressing, as
computers are not only making much more data available
but also making simpler highly sophisticated statistical anal-
yses through spreadsheets and software such as SAS.

To obtain help in this matter, I contacted the LSU De-
partment of Experimental Statistics, which assigned me as
an adviser an ecologist named Jay Geaghan. Jay suggested
that I read a manual entitledSome Methods for the Statis-
tical Analysis of Samples of Benthic Invertebrates(Elliott,
1977). It was an eye-opener in two respects. First, the
manual introduced me to the system of probability distri-
butions, with which biologists model patterns in nature,
showing how to test for them and transform them for
standard parametric statistical operations. Second, it pointed
out that the key model for the skewed distributions domi-
nating biological phenomena is the negative binomial dis-
tribution. This jarred a memory of Price (1976) describing
the negative binomial distribution as the model for the
double-edged Matthew Effect, which Robert K. Merton and© 2000 John Wiley & Sons, Inc.
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his students, Jonathan and Stephen Cole and Harriet Zuck-
erman, had placed at the basis of the social stratification of
science. In my previous writings (Bensman, 1982, 1985), I
had posited the double-edged Matthew Effect as underlying
the skewed patterns of library use.

The research on the scientific information market neces-
sitated solving many complex statistical problems. In seek-
ing the solutions for these problems, I noticed a dual pattern.
First, most of these problems had already been solved in
biostatistics. Second, most of the works presenting these
solutions were British. The Elliott manual, for example, was
published by the British Freshwater Biological Association,
and based on samples of benthic invertebrates in the English
Lake District. It also dawned on me that bibliometrics as a
discipline had also risen to a great extent in Britain. Being
a historian by training, my interest was naturally piqued,
and I decided to write a book that would not only present a
history of this development but would also be an aid to
persons doing statistical research in library and information
science. Such an approach seemed particularly beneficial,
because, like myself, many persons in the library field
understand things better in terms of their historical devel-
opment than mathematically.

The Probability Distributions Affecting Library
and Information Science

In the analysis of the production, dissemination, use, and
evaluation of human knowledge, we are basically dealing
with three discrete or counting distributions and two con-
tinuous laws of error. The counting distributions are the
following: (1) the binomial, which models uniformity and
whose characteristic is that the variance is less than the
mean; (2) the Poisson, which models randomness and
whose characteristic is that variance equals the mean; and
(3) the negative binomial, which models concentration and
whose characteristic is that the variance is greater than the
mean. I hasten to add that the negative binomial is only the
most useful of a series of contagious distributions, and,
depending on the circumstances, it can change into the beta
binomial, Poisson, or logarithmic series.

To help explain the idea of a law of error, I will present
to you my concept of a statistical model. A statistical model
is a mental construct of reality that is logically designed to
test a hypothesis. It is centered on a hypothetical point, from
which deviations are measured according to a law of error.
Depending on the size of the deviation from the hypothet-
ical point on which the model is centered, one accepts or
rejects the hypothesis being tested. In statistical textbooks,
the law of error is the normal distribution, and the hypo-
thetical center is the arithmetic mean, from which deviations
are measured in standard numbers. Historically, the normal
distribution was derived as an approximation to the bino-
mial. However, because of the multiplicative character of
many phenomena in the biological, social, and information
sciences, the law of error in these disciplines is in numerous
cases the lognormal distribution, and the hypothetical center

is the geometric mean, from which deviations are measured
in logarithmic units. The negative binomial can be trans-
formed into an approximation of the lognormal distribution.

Library and Information Science within the
Context of the Historical Relationship of
Probability and Statistics to Science as a Whole

The history of probability and statistics is too complex to
be adequately summarized in a paper such as this. There-
fore, I will restrict myself to reviewing the theses of two key
books on this subject. Together, these books validate the
view presented in a two-volume collection of essays pub-
lished by MIT Press and entitledThe Probabilistic Revolu-
tion (1987): that since 1800, the world has been experienc-
ing a scientific revolution, in which the mathematical theory
of probability has been adopted in discipline after disci-
pline. This probabilistic revolution is coming to library and
information science, as specific, empirical, bibliometric
laws are being replaced by general stochastic models. Of
primary importance in this transition has been the seminal
work on bibliometric distributions by Bertram C. Brookes
and Abraham Bookstein.

For his part, Brookes (1977, 1979, 1984) concentrated on
Bradford’s Law of Scattering, which he explored theoreti-
cally as a very mixed Poisson model. Coming to regard
Bradford’s Law as a new calculus for the social sciences, he
found it almost identical mathematically to other empirical
bibliometric laws, suspecting of these laws that “beneath
their confusions there lurks a simple distribution which
embraces them all but which remains to be identified”
(Brookes, 1984, p. 39). He reduced these various laws to a
single law, which he modeled two ways as “the Inverse
Square Law of frequencies” and “the Log Law of ranks.”
The main features of Brookes’ hypothesis of a single dis-
tribution arising from a mixed Poisson process were en-
dorsed by Bookstein. In his work, Bookstein (1990, 1995,
1997) posited through mathematical analysis that the vari-
ous bibliometric laws together with Pareto’s law on income
are variants of a single distribution, in spite of marked
differences in their appearance. Seeking a way to deal with
these distributions, Bookstein (1997) came to the following
conclusion:

I have argued. . .that one important mechanism for surviv-
ing in an ambiguous world is to create functional forms that
are not too seriously affected by imperfect conceptualiza-
tion. In this article I pushed this notion further, and looked
at suitable random components for the underlying stable
expectations. The family of compound Poisson distributions
seems uniquely able to provide this service. (p. 10).

The first book to be reviewed isContributions to the
History of Statisticsby Westergaard (1968). In this work,
Westergaard writes that the history of modern statistics has
been marked by two lines of evolution, which surprisingly
have had little to do with each other. The first was “Political
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Arithmetic,” which originated in London in 1662 with the
publication by John Graunt of a remarkable book,Natural
and Political Observations upon the Bills of Mortality.This
was the first attempt to interpret mass biological and social
behavior from numerical data. “Political Arithmetic” was
first concerned with questions of mortality and other prob-
lems of vital statistics but later turned to economic statistics.
Gradually the expression “Political Arithmetic” was re-
placed by the word “statistics,” a term earlier employed for
the description of states. Independently from “Political
Arithmetic,” there evolved what Westergaard calls the “Cal-
culus of Probabilities,” which was developed by mathema-
ticians in investigations of a purely abstract character. Ac-
cording to Westergaard’s interpretation, the history of mod-
ern statistics has been a struggle to merge “Political
Arithmetic” with the “Calculus of Probability,” so that
proper inferences could be drawn from the collection of
numbers. A similar struggle is taking place today in library
and information science, as librarians conduct exercises in
“Library Arithmetic” on the massive amounts of data they
collect to solve their problems, whereas information scien-
tists play complex mathematical games without any regard
to the abilities of librarians or the basic statistical problems,
which they need to solve.

The thesis of the other book to be discussed—The His-
tory of Statistics: The Measurement of Uncertainty before
1900by Stigler (1986)—is complementary to that of West-
ergaard in that he, too, traces the development and spread of
statistical ideas. However, his treatment is much different.
Whereas Westergaard concentrates on the history of the
collection of data of interest to Political Arithmetic like state
censuses, dealing minimally with the Calculus of Probabil-
ity, Stigler emphasizes the role of statistics in the assess-
ment and description of uncertainty, accuracy, and variabil-
ity, by focusing on the introduction and development of
explicitly probability-based statistics in the two centuries
from 1700 to 1900. According to Stigler, during this period,
statistics in his sense underwent what might be described as
a simultaneous horizontal and vertical evolution. It was
horizontal in that, prior to 1827, probability-based statistics
originated in astronomy and geodesy, spreading after that
date to psychology, biology, and to the social sciences. It
was vertical in that the understanding of the role of proba-
bility advanced, as the analogy of games of chance gave
way to probability models for measurements, leading finally
to the introduction of inverse probability and the beginnings
of statistical inference.

Such a perspective makes most interesting Stigler’s dis-
cussion of the derivation of the normal distribution from the
binomial in astronomy and geodesy during the eighteenth
century. This process culminated at the beginning of the
nineteenth century, when Pierre Simon Laplace and Carl
Friedrich Gauss simultaneously combined all the elements
of the normal distribution in what Stigler terms “the Gauss-
Laplace Synthesis.” This synthesis included, among others,
the following elements: (a) Jacob Bernoulli’s Law of Large
Numbers, by which, as the number of observations in-

creases, the relative number of successes must be within an
arbitrarily small (but fixed) interval around the theoretical
probability with a probability that tends to one; (b) Abraham
De Moivre’s derivation of the normal probability or bell-
shaped curve as an approximation to the probability for
sums of binomially distributed quantities lying between two
values; (c) Thomas Simpson’s justification of the advantage
of taking the arithmetic mean of several observations in
astronomy over that of a single, well-taken observation; and
(d) Adrien Legendre’s development of the least squares
method for minimizing error. From Stigler’s treatment, the
normal distribution clearly emerges as what it actually is:
the law of error in point estimation in astronomical and
geodetic observations.

With this interpretation in mind, it is important to state
the three principles that Pearson (1956b, p. 108) emphasized
as connoted by the normal curve of errors: (1) an indefinite
number of “contributory” causes; (2) each contributory
cause is in itself equally likely to give rise to deviation of
the same magnitude in excess and defect; and (3) the con-
tributory causes are independent. Under these conditions,
there arises the bell-shaped curve, where the mean equals
the mode and the observations are symmetrically distributed
on both sides of this point.

The Normal Paradigm

We now come to what I will term the “normal para-
digm,” i.e., the idea that phenomena in nature and society,
if sorted into homogeneous sets, are distributed according to
the same law of error as observations in astronomy and
geodesy. From personal experience, I can testify that this
paradigm still has a powerful hold on the minds of people,
at least in Baton Rouge, Louisiana. I am not alone in this
observation. Already in 1916, Pearson (1956c), who demol-
ished the normal paradigm in a series of brilliant papers in
the 1890s, wrote in exasperation that “to attempt to describe
frequency by the Gaussian curve is hopelessly inadequate”
and “It is strange how long it takes to uproot a prejudice of
that character!” (p. 555).

The main culprit in the rise of the normal paradigm was
the Belgian scientist, Adolphe Quetelet. In the period 1823–
1832, Quetelet’s main project was the establishment of an
astronomical observatory in Brussels. As part of this
project, he visited Paris, where he came into contact with
Laplace. This contact aroused in Quetelet the keen interest
in statistical research, based on the theory of probabilities,
that became the focus of all his scientific work.

One of Quetelet’s main contributions was to extend the
use of probability from celestial to terrestrial phenomena,
and he is best known for the application of probability in
studies of the physical and social attributes of human be-
ings. Quetelet’s studies of these attributes were dominated
by his concept of the “average man” or the “homme
moyen.” The basis of this concept was his belief that all
naturally occurring distributions of properly collected and
sorted data follow a normal curve. He applied this theory

818 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE—July 2000



whether he was dealing with the chest sizes of Scottish
soldiers or the penchant of humans to commit crimes. This
thinking dominated Quetelet’s approach to the definition of
sets. His reasoning in this matter is summed up by Stigler
(1986):

What was true of astronomical observations would also be
true of heights of men, of birth ratios, and of crime rates.
Now, if homogeneity implied that observations would fol-
low the normal law, then why not use this device for
discerning homogeneity? Simply examine the distribution
of a group of measurements. If they fail to exhibit this form,
then this is surely evidence of lack of homogeneity—or at
least evidence that the primary inhomogeneities are not in
the nature of a large number of accidental (independent,
random, of comparable force and size) causes. If they do
exhibit this normal form, then this is prima facie evidence
that the group is homogeneous and susceptible to statistical
analysis as a group, without distinguishing the members of
the group by identifying labels. (p. 205)

Quetelet used this type of reasoning in analysis of the
heights of 100,000 French conscripts, coming to the con-
clusion of large-scale draft evasion because of the excess of
men in the shortest class exempt from service. In another
study of the heights of French conscripts—this time from
the Department of Doubs in eastern France in the period
1851–1860—Adolphe Bertillon applied the same type of
logic. Finding that the heights did not exhibit the usual
symmetrical shape but rather had two modal values, Bertil-
lon hypothesized that the population of Doubs consisted of
two human types, one short and one tall. His theory seemed
confirmed when his colleague Lagneau subsequently found
that the inhabitants of Doubs were primarily of two different
races, the Celts and the Burgundians. Bertillon’s investiga-
tions bore an uncanny resemblance to the later work by
Weldon that led Pearson to challenge the normal paradigm.

Quetelet’s theories were subjected to severe criticism.
One of the most devastating came from Bertrand; and
Hogben, in his critique of statistical theory, lovingly quotes
in full Bertrand’s attack in a translation that captures all its
Voltairean glory. By his transfer of the normal distribution
from astronomy to the study of humans, Quetelet shifted the
arithmetic mean from an actual point like a star or a comet
in the sky to a hypothetical point in a set of humans, to
which no human in the set may actually conform. This
opened him—and, indeed, all modern inferential statis-
tics—to charges of Platonism, which Bertrand made against
him in the following passages of an analysis of one of
Quetelet’s findings that the average height of a set of 20,000
soldiers was 1 m 75:

M. Quetelet. . .would have us accept a precise definition of
the word Man, independently of human beings whose par-
ticularity can be considered accidental. . . . Ourinequalities
of height are, in his eyes, the result of inept measurements
taken by Nature on an immutable model in whom alone she
reveals her secrets. 1 m 75 is thenormal height. A little

more makes no less a man, but the surplus or deficit in each
individual is nature’s error, and thus monstrous. . . . (Hog-
ben, pp. 172–173)

After a short disquisition in solid geometry on the rela-
tionship of the volume and surface of spheres to their radius,
Bertrand drove the dagger home, stating:

Men’s shapes unfortunately can vary, and M. Quetelet prof-
its therefrom. By combining the mean weight of 20,000
conscripts with their mean height, we should produce an
absurdly fat man and, whatever Reynolds might have said,
a poor model for an artist. . . . (Hogben, pp. 173–174)

Another flaw in Quetelet’s thinking is that there is no
inextricable link of the homogeneity of sets with the normal
distribution, and, as we shall see, homogeneity lies at the
basis of quite a different probability distribution. In his
classic treatise on probability, Keynes (1921) noted that,
because of Quetelet’s work, the “suspicion of quackery” had
not yet disappeared from the study of probability and that
“There is still about it for scientists a smack of astrology, of
alchemy” (p. 335).

The British Biometric Revolution

The normal paradigm was demolished in the British
biometric revolution. This revolution lasted roughly from
1865 to 1950, and it led to the creation of modern inferential
statistics. The most important figures of the early phase of
the revolution were Francis Galton, Karl Pearson, W.F.R.
Weldon, George Yule, and William Gosset or “Student,”
whereas the most important persons of the latter phase were
Ronald Fisher, Pearson’s son Egon, Jerzy Neyman, and
Maurice Kendall. University College, London, was the ep-
icenter of the British biometric revolution, which entered
the United States through the work of Snedecor at Iowa
State University, a major agricultural research center.
Fisher, Kendall, and Neyman visited Iowa State. One of the
primary vehicles for the transmission of British statistical
methods into the United States was Snedecor’s textbook
Statistical Methods, which went through eight editions from
1937 to 1989. A major reason for the broad influence of this
book was that it made statistical methods accessible to
persons with little mathematical training. The early edi-
tions’ full title was Statistical Methods Applied to Experi-
ments in Biology and Agriculture.The latter editions were
coauthored by Cochran, who came to Iowa State in 1938
from the Rothamsted Experimental Station, the site of Fish-
er’s major work, where agricultural research had been in
progress since 1843. As the dates of these editions show, we
are still very close historically to the British biometric
revolution in terms of the diffusion of ideas. The work of the
creators of the British biometric revolution was prolific and
wide-ranging, and cannot be summarized in a paper of this
nature. Here, I will focus only on the work of the men of its
first phase on probability distributions.
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Destruction of the Normal Paradigm

The British biometric revolution began with an attempt
to place Darwin’s theory of evolution on firm mathematical
bases. It was begun by Galton, whose first cousin was
Charles Darwin. The dominant theme in Galton’s work
from 1865 on was the study of heredity, and his work in this
field was distinguished by its statistical nature. As a statis-
tician, he was a direct descendant of Quetelet. In his book,
Hereditary Genius, first published in 1869, Galton (1978)
paid tribute to Quetelet after stating, “The method I shall
employ for discovering all this, is an application of the very
curious theoretical law of ‘deviation from an average’” (p.
26). Galton devoted the appendix of this book to a demon-
stration of Quetelet’s method in astronomy. The worshipful
attitude Galton displayed toward the normal distribution is
shown by the following oft quoted passage from his 1889
work, Natural Inheritance:

I know of scarcely anything so apt to impress the imagina-
tion as the wonderful form of cosmic order expressed by the
“Law of Frequency of Error.” The law would have been
personified by the Greeks and deified, if they had known of
it. It reigns with serenity and in complete self-effacement
amidst the wildest confusion. The huger the mob, and the
greater the apparent anarchy the more perfect is its sway. It
is the supreme law of Unreason. Whenever a large sample
of chaotic elements are taken in hand and marshalled in
order of their magnitude, an unsuspected and most beautiful
form of regularity proves to have been latent all along.
(Galton, 1889, p. 66)

Despite his veneration of the normal distribution, even
Galton noticed that it did not correspond to much of reality,
particularly in biological and social phenomena. Because of
his weakness in mathematics, he enlisted the aid of a Cam-
bridge mathematician named McAlister to help solve this
problem. In 1879, Galton presented a paper along with a
memoir by McAlister (1879) that worked out the mathe-
matics of his insight. In his paper, Galton (1879) stated that
his purpose was “to show that an assumption which lies at
the basis of the well-known law of ‘Frequency of
Error’. . .is incorrect in many groups of vital and social
phenomena. . .” (pp. 365–366). He then defined the assump-
tion in the following terms:

The assumption to which I refer is that errors in excess or in
deficiency of the truth are equally possible; or conversely,
that if two fallible measurements have been made of the
same object, their arithmetical mean is more likely to be the
true measurement than any other quantity that can be
named. (p. 366)

Galton then referred to the work in sense perception by
Fechner, who had developed a law, whose simplest form is:
sensation5 log stimulus. According to Galton, in such
cases, the geometric mean, rather than the arithmetic mean,
is the better measure, and he then stated:

The same condition of the geometric mean appears to char-
acterise the majority of the influences, which, combined
with those of purely vital phenomena, give rise to the events
with which sociology deals. It is difficult to find terms
sufficiently general to apply to the varied topics of sociol-
ogy, but there are two categories of causes, which are of
common occurrence. The one is that of ordinary increase,
exemplified by the growth of population, where an already
large nation tends to become larger than a small one under
similar circumstances, or when capital employed in a busi-
ness increases in proportion to its size. The other category is
that of surrounding influences, or “milieux”. . .such as a
period of plenty in which a larger field or a larger business
yields a greater excess over its mean yield than a smaller
one. Most of the causes of those differences with which
sociology [is] concerned may be classified under one or the
other of these two categories. . . . In short, sociological phe-
nomena, like vital phenomena are, as a general rule, subject
to the condition of the geometric mean. (pp. 366–367)

Galton then went on to warn that the ordinary law of the
frequency of error, based on the arithmetic mean, could lead
to absurdity, when applied to wide deviations, stating that
statisticians must confine its application within a narrow
range of deviations. McAlister’s memoir, entitled “The Law
of the Geometric Mean,” was a working out of the mathe-
matics of the lognormal distribution.

Although Galton never understood the importance of his
breakthrough and made only sporadic use of the lognormal
in his own work, the true significance of this distribution for
the biological, social, and, in particular, information sci-
ences can be seen in the following two analyses. The first
was done by Keynes in his treatise on probability. Com-
menting upon McAlister’s work, Keynes (1921) wrote:

[McAlister’s] investigation depends upon the obvious fact
that, if the geometric mean of the observations yields the
most probable value of the quantity, the arithmetic mean of
the logarithms of the observations must yield the most
probable value of the logarithm of the quantity. Hence, if we
suppose that the logarithms of the observations obey the
normal law of error (which leads to their arithmetic mean as
the most probable value of the logarithms of the quantity),
we can by substitution find a law of error for the observa-
tions themselves which must lead to the geometric mean of
them as the most probable value of the quantity itself. (pp.
198–199)

Shortly thereafter, Keynes came to the conclusion:

. . .the main advantage of. . .Sir Donald McAlister’s law of
error. . .lies in the possibility of adapting without much
trouble to unsymmetrical phenomena numerous expressions
which have been already calculated for the normal law of
error and the normal curve of frequency. (p. 200)

The other analysis pertains specifically to information
science. It was done by Shockley (1957), a co-winner of the
1956 Nobel Prize in physics for his role in the creation of
the transistor. Shockley studied the publication rates of
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scientists at Los Alamos Scientific Laboratory and other
places. He found highly skewed distributions with some
individuals publishing at a rate of at least 50 times greater
than others did. As a result of this, Shockley decided that it
was more appropriate to consider not simply the rate of
publication but its logarithm, which appeared to have a
normal—or, better, lognormal—distribution over the pop-
ulation of typical research laboratories.

The problem, which led to the collapse of the normal
paradigm, has been described by E. Pearson (1970, pp.
328–330), Karl’s son, as that of “the double humped
curve.” It arose in Galton’s studies of heredity. Galton
(1978, pp. xvii–xix) himself succinctly defined the problem
in the preface of the 1892 edition of his book,Hereditary
Genius, in terms of the concepts of “variations” and
“sports.” During the course of his work, Galton developed
the idea of “regression to the mean,” which he defined in the
1892 preface in the following manner:

It has been shown inNatural Inheritancethat the distribu-
tion of faculties in a population cannot possibly remain
constant, if,on the average, the children resemble their
parents. If they did so, the giants (in any mental or physical
particular) would become more gigantic, and the dwarfs
more dwarfish, in each successive generation. The counter-
acting tendency is what I called “regression.” Thefilial
centre is not the same as theparentalcentre, but it is nearer
to mediocrity; it regresses towards the racialcentre.(Gal-
ton, 1978, p. xvii)

Galton viewed “variations” as variance in characteristics
that occur around this racial center in accordance with the
normal law of error without shifting this center. The case
was much different with “sports.” Here, according to Gal-
ton, a new characteristic appears in a particular individual,
causing him to differ distinctly from his parents and from
others of his race. In this scheme, “sports” are different from
“variations,” because, when transmitted to descendants,
they establish a new racial center, towards which regression
must be measured, thereby marking a new stage in evolu-
tion.

The concept of a “sport” lay at the basis of the problem
of “the double humped curve,” which Weldon handed Pear-
son, leading to the overthrow of the normal paradigm. A
professor of zoology at University College, London, Wel-
don became convinced that the problem of animal evolution
was essentially a statistical problem. Because of Galton’s
influence, he worked under the assumption that measure-
ments of the physical characteristics in animal populations
would be normally distributed within a homogeneous race.
Weldon had success with this theory in his early work, but
then he obtained an asymmetrical result that did not fit the
normal curve in measuring the frontal breadth of a sample
of crabs from the Bay of Naples. Weldon (1893, p. 324)
hypothesized that the asymmetrical distribution he had ob-
tained arose from the presence, in the sample measured, of
two races of individuals clustered symmetrically about sep-

arate mean magnitudes. He excitedly wrote to Galton:
“Therefore, either Naples is the meeting point of two dis-
tinct races of crabs, or a ‘sport’ is in the process of estab-
lishment” (E. Pearson, 1970, p. 328n). The solution of the
problem required the dissection of a frequency distribution
into two normal components. Lacking the necessary math-
ematical skills, Weldon turned for help to Pearson, who
taught applied mathematics at University College.

The problem posed by Weldon led to a series of statis-
tical memoirs by Pearson entitled “Contributions to the
Mathematical Theory of Evolution,” the first two of which
were published in thePhilosophical Transactions of the
Royal Society of Londonduring 1894–1895. Pearson
(1956a, pp. 1–40) analyzed Weldon’s problem in the first
statistical memoir. As set forth by E. Pearson (1970, p. 329),
there were three obvious alternatives to the solution of the
problem of the “double humped curve:” (a) the discrepancy
between theory and observation was no more than might be
expected to arise in random sampling; (b) the data are
heterogeneous, composed of two or more normal distribu-
tions; and (c) the data are homogeneous, but there is real
asymmetry in the distribution of the variable measured.
Acceptance of alternative (c) meant rejection of the normal
paradigm, and this is precisely what Pearson (1956a) did in
a dazzling display of mathematical prowess, coming to the
following conclusion: “Professor Weldon’s material isho-
mogeneous, and the asymmetry of the ‘forehead’ curve
points to real differentiation in that organ, and not to the
mixture of two families having been dredged up” (p. 29).

Notwithstanding the first statistical memoir’s huge sig-
nificance, the second memoir by Pearson (1956b, pp. 41–
112) was even of greater import for the future. Subtitled
“Skew Variation in Homogeneous Material,” it was dedi-
cated to those frequency curves that arise in the case of
homogeneous material, when the tendency to deviation on
one side of the mean is unequal to deviation on the other
side. Pearson noted that such curves arise in many physical,
economic, and biological investigations, and he described
the general type of this frequency curve as varying through
all phases from the form close to the negative exponential to
a form close to the normal frequency curve. Pearson’s
plotting of examples of these curves is shown in Figure 1.

To deal with these frequency curves, Pearson (1956c, pp.
529–530) resorted to the hypergeometrical series, because
this series abrogates the fundamental axioms on which the
Gaussian frequency is based in the following three ways: (1)
the equality of plus and minus errors of the same magnitude
is replaced by an arbitrary ratio; (2) the number of contrib-
utory causes is no longer indefinitely large; and (3) the
contributions of these causes are no longer independent but
correlated. In the view of Pearson (1905/1906, pp. 203–204)
the “Galton-McAlister Geometrical Mean Law,” or the log-
normal distribution, had also abrogated the third Gaussian
axiom, because it amounted to saying that increments of the
variate are correlated with the value of the variate already
reached.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE—July 2000 821



F
IG

.
1.

P
ea

rs
on

’s
ex

am
pl

es
of

as
ym

m
et

ric
al

fr
eq

ue
nc

y
cu

rv
es

oc
cu

rr
in

g
in

pr
ac

tic
al

st
at

is
tic

s.

822 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE—July 2000



On the basis of the hypergeometrical series, Pearson
constructed in his second statistical memoir a system of five
frequency curves, which are given below together with their
modern description and Pearson’s characterization of them
(Pearson, 1956b, p. 58):

Type I (asymmetric beta)—Limited range in both direction,
and skewness;

Type II (symmetric beta)—Limited range and symmetry;
Type III (gamma or chi-square)—Limited range in one

direction only and skewness;
Type IV (a family of asymmetric curves)—Unlimited range

in both directions and skewness; and
Type V (the normal)—Unlimited range in both directions

and symmetry.

As E. Pearson (1970, pp. 329–330) noted, his father’s
derivation of the normal distribution off the hypergeometri-
cal series was revolutionary, because it broke with the
200-year-old tradition of deriving the normal curve as an
approximation to the binomial. The final 30 pages of the
second statistical memoir were devoted to demonstrating
the superiority of this system of curves over the normal
distribution in the description of reality, using examples that
ranged from barometric pressures, to the heights of St.
Louis schoolgirls, to statistics on pauperism. Ultimately,
Pearson expanded his system of frequency curves to 12, and
he pointed out that “the Gaussian is a mere point in an
infinite range of symmetrical frequency curves, and a single
point in a doubly infinite series of general frequency distri-
butions” (Pearson, 1956c, p. 550).

As a further development of his work during this period,
Pearson (1956d, pp. 339–357) developed his chi-square
goodness-of-fit test, which determines how well the ob-
served frequencies of an actual distribution match the ex-
pected frequencies calculated from a theoretical distribu-
tion. He used this test to demonstrate again the superiority
of his skewed distributions over the normal distribution,
declaring that, “if the earlier writers on probability had not
proceeded so entirely from the mathematical standpoint, but
had endeavored first to classify experience in deviations
from the average, and then to obtain some measure of the
actual goodness-of-fit provided by the normal curve, that
curve would never have obtained its present position in the
theory of errors” (p. 355).

In an evaluation of Pearson’s system of frequency
curves, Neyman (1939) stated that their importance is “be-
cause of the empirical fact that, it is but rarely that we find
in practice an empirical distribution, which could not be
satisfactorily fitted by any such curves” (p. 55). Neyman
saw as one of the main tasks explaining and mathematically
describing the “machinery” producing empirical distribu-
tions of a given kind.

Together, the Galton-McAlister papers on the lognormal
distribution and the Pearson paper on skew variation in
homogeneous material can be regarded as the founding
documents for the application of statistical methods in li-

brary and information science. The first provided the law of
error, whereas the second laid the bases for the actual types
of distributions with which this discipline has to deal. Of
particular importance in the latter sense is Pearson’s Type
III, the gamma or chi-square distribution. In his second
memoir, Pearson (1956b, pp. 72–73) called special attention
to it, pointing out how this distribution in its malleability
corresponds to the types of frequency curves found in
reality, ranging from close to the negative exponential to
close to the normal frequency curve. He graphed seven
subtypes of the gamma distribution, and these subtypes are
shown in Figure 2.

I can personally testify to the accuracy of Pearson’s
observations on the relative infrequency of the normal dis-
tribution and as to how well the gamma distribution de-
scribes those often found in reality. For the research on
scientific journals, I ran dozens of datasets on such measures
as total citations to journals and academic departments,
journal impact factors, faculty ratings of journals, library
use of journals, library holdings of journals, prices of jour-
nals, etc. Invariably, I obtained a distribution that corre-
sponded to three of Pearson’s subtypes of the gamma dis-
tribution, in that it was unimodal with the mode at the lower
end of the distribution as well as highly and positively
skewed to the right. When I showed my statistical adviser
computer runs of faculty ratings and prices of journals in
several subjects, he just shook his head and commented that
all the data seemed to conform to the same distribution. The
only time I did not obtain such a distribution was when I
was selected by the National Research Council to test the
database it had constructed during its 1993 assessment of
the quality of U.S. research-doctorate programs. In running
the distributions of the peer ratings of chemistry depart-
ments on the basis of a questionnaire designed in 1964 and
used in that year, 1969, 1981, and 1993, I obtained for all
years a symmetrical binomial approximating the normal
distribution. This was such an unusual event that I suspected
systematic instrument error. With such a distribution, there
is a 50/50 chance of being on either side of the mean, but 11
chemistry programs had always been in the top 15 in peer
ratings of such programs since 1924, in spite of the ever-
increasing number of these programs being evaluated.
Moreover, the intercorrelations of the 1964, 1969, 1981, and
1993 ratings ranged from 0.78 to 0.93. Cal Tech, MIT, and
the other nine programs were pasted like barnacles on the
extreme right side of the distributions and were not shifting
back and forth across the mean as would be expected under
the conditions of random observational error. I could only
come to the conclusion that the 1964 questionnaire was
severely flawed. As a historical aside, it is interesting to note
that Galton had as a student and profoundly influenced
James McKeen Cattell, the psychologist who constructed
the first rankings of U.S. universities and academic depart-
ments in the sciences on the basis of peer ratings at the
opening of the twentieth century.
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The Eugenics Connection

At this point, it is important to emphasize that there is an
extremely dark and dangerous side to the subject under
discussion. The development of modern inferential statistics
was closely intertwined with the creation of eugenics. Gal-
ton was the creator of eugenics, which he defined in his
1883 book,Inquiries into the Human Faculty and Its De-
velopment, in the following manner:

[Eugenic questions are] questions bearing on what is termed
in Greek,eugenes, namely, good in stock, hereditarily en-
dowed with noble qualities. This, and the allied words,
eugeneia, etc., are equally applicable to men, brutes, and
plants. We greatly want a brief word to express the science
of improving stock, which is by no means confined to
questions of judicious mating, but which, especially in the
case of man, takes cognisance of all influences that tend in
however remote a degree to give to the more suitable races
or strains of blood a better chance of prevailing speedily
over the less suitable than they otherwise would have had.
(Galton, 1883, pp. 24n–25n)

In 1904, he founded a research fellowship in national
eugenics at the University of London, which was to develop
in a few years into the Galton Laboratory of National
Eugenics, with Karl Pearson as its first director. Pearson
was succeeded by Fisher. In 1911, the Galton Laboratory of
National Eugenics was merged with the Biometric Labora-
tory founded by Pearson in 1895 to form the first academic
department of statistics, that of University College, London,
and Pearson was its first professor. MacKenzie (1981) de-
votes his book,Statistics in Britain, 1865–1930: The Social
Construction of Scientific Knowledge, to the close connec-
tion of the development of modern statistics with eugenics,
and he sums up the relationship thus:

One specific set of social purposes was common to the work
of Galton, Karl Pearson, and R.A. Fisher. All were eu-
genists. They claimed that the most important human char-
acteristics, such as mental ability, were inherited from one
generation to the next. People’s ancestry, rather than their
environment was crucial to determining their characteris-
tics. The only secure long-term way to improve society,
they argued, was to improve the characteristics of the indi-
viduals in it, and the best way to do this was to ensure that
those in the present generation with good characteristics
(the ‘fit’) had more children than those with bad character-
istics (the ‘unfit’). (p. 11)

As MacKenzie points out, the work of these men in
eugenics contributed to a body of notorious and controver-
sial ideas, laying the bases for debates about race, class, and
IQ. Eugenics were discredited by the virulent form they
took in the racial policies of Nazi Germany, and this bad
odor informed the ferocity of the assault on the logical
structure of statistics after World War II by the biologist
Hogben, who described Galton as “the father of the political
cult variously namedeugenicsor Rassenhygiene” (p. 106),

referred to “Galton’s racialist creed” (p. 325), and decried
“K. Pearson’s flair for ancestor worship” (p. 176).

The dangers inherent in this situation for library and
information science can be seen in the strange career of
Shockley following his paper described here on the produc-
tivity of individual scientists. Lotka’s Inverse Square Law
of Scientific Productivity stands in apparent contradiction to
the usual way intelligence is measured through the Stan-
ford-Binet and other such tests. In their textbook, Brown
and Herrnstein (1975, pp. 506–510), two Harvard psychol-
ogists, state that the scores of these tests result in the normal
distribution, making the following observation: “If a test
yields scores that do not match a normal distribution, it is
often possible to whip them into the right shape by a
suitable transformation” (p. 510). This fact underlies the
title of the highly controversial book,The Bell Curve:
Intelligence and Class Structure in American Life, by Her-
rnstein and Murray, whose conclusions and policy prescrip-
tions caused Fraser (1995) to declare that “Not since the
eugenics craze of the 1920s has this line of thought occu-
pied a serious place on the national agenda” (p. 3). In his
rediscovery of Lotka’s Law in the lognormal form, Shock-
ley (1957) hypothesized that the rise of this distribution was
the manifestation of some fundamental mental attribute
based on a factorial process, which enabled some individ-
uals to be much more highly productive, and that the great
variation in rate of production from one individual to an-
other could be explained on the basis of simplified models
of the mental processes concerned. From here he went on to
develop his theory of “dysgenics,” using data from the U.S.
Army’s pre-induction IQ tests to prove that African Amer-
icans were inherently less intelligent than Caucasians.
Among his more controversial actions was to propose that
individuals with IQs below 100 be paid to undergo volun-
tary sterilization, and he raised eyebrows by openly and
repeatedly donating to a so-called Nobel sperm bank de-
signed to pass on the genes of geniuses. Shockley died,
regarding his work on race as more important than his role
in the discovery of the transistor.

Development of a New Stochastic Model

Before one can understand the next development in the
British biometric revolution of vast import for library and
information science, it is necessary to have some knowledge
of the Poisson distribution. Basically, the Poisson distribu-
tion arises as a result of random occurrences over time and
space. In hisIntroduction to Mathematical Sociology,
Coleman (1964, p. 291) states that the advantage of the
Poisson process for the social sciences is that, unlike the
binomial process, which is based on discrete “trials,” the
Poisson process occurs continuously over time and, there-
fore, is suitable for the naturally occurring events studied in
the social sciences, where controlled experiments are often
not possible. This distribution was first derived by Simeon
Poisson as a limit to the binomial in a study published in
1837 on French judicial decisions. However, the first person
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to grasp the statistical significance of the Poisson formula
was von Bortkiewicz, who in 1898 published a small pam-
phlet entitledDas Gesetz von kleinen Zahlen, containing the
classic illustration of the Poisson distribution in an analysis
of the rate at which soldiers were kicked to death by horses
in 14 Prussian army corps in the period 1875–1894. The
literal translation of the title is “The Law of Small Num-
bers,” but Crathorne (1928) suggests as better translations
“The Law of the Probability of Rare Events” or “The Law
of Large Numbers in the Case of Small Frequencies” (p.
173). An English translation of the key parts of von Bort-
kiewicz’s pamphlet with modern mathematical notation is
given by Winsor (1947).

The Poisson distribution has one parameter, which is
estimated off the mean (m) and also equals the variance (s2).
The basic equation for the Poisson is:

P~x! 5 e2z~zx/x! !

where x is the number of successes,z is the parameter
estimated, ande 5 2.71828 and is the base of natural
logarithms. As Poisson did, modern textbooks derive the
Poisson as a limit of the binomial, and Snedecor and Coch-
ran (1989, pp. 30–31, 110–113, 117–119, 130–133) illus-
trate the basic logic behind this method. Given a two-class
population of successes and failures, wherep is the proba-
bility of success and is obtained by dividing the number of
successes by the total number of trials orn, the population
mean (m) equalsp. Hence, in repeated trials taking random
binomial samples of any sizen, m 5 np. Using a sample
size of eight, Snedecor and Cochran show how the Poisson
arises from the binomial. Whenp 5 0.5, the probability
distribution of success is symmetrical with the mode at four
successes, approximating the normal, but whenp 5 0.2, the
probability distribution becomes positively skewed with the
mode at one success and a concomitant decrease in the
probability of the higher numbers of successes. Snedecor
and Cochran then show that the binomial tends toward the
normal for any fixed value ofp as n increases, with the
requiredn being smallest atp 5 0.5, but this approximation
to the normal fails atp , 0.5, when the meanm 5 np falls
below 15, even ifn is large. The binomial distribution then
remains positively skewed, and we are dealing with rare
events, requiring the Poisson distribution.

It is often easier to explain what a phenomenon is by
demonstrating what it is not, and I propose to do this with
the Poisson distribution, using Urquhart’s Law as an exam-
ple. Although relatively unknown, Urquhart’s Law is one of
the most important library and information science laws.
Briefly stated, it posits that the supralibrary use of scientific
journals is the same as their intralibrary use, concentrating
in the same fashion on the same titles. By supralibrary use,
I mean use outside the collections of individual libraries,
such as through interlibrary loan or centralized document
delivery, whereas intralibrary use refers to the use of mate-
rials held in the collections of individual libraries by the

patrons of these libraries. Urquhart’s Law is the library use
counterpart to the citation-based Law of Concentration pos-
ited by Garfield (1971, 1972, p. 476). Taken together, these
two laws dictate that significant science tends to concentrate
within a relatively few journals. Urquhart’s Law lies at the
basis of the operations of the British Library Document
Supply Centre, and failure to understand the implications of
this law has led to efforts at interlibrary cooperation in the
U.S. resulting in what may be considered expensive failures.

Urquhart’s Law was formulated by Donald J. Urquhart
as a result of study of the use of scientific journals con-
ducted in 1956 at the Science Museum Library (SML) in the
South Kensington section of London in preparation for his
establishment in Boston Spa, Yorkshire, of the National
Lending Library for Science and Technology, which ulti-
mately became the present-day British Library Document
Supply Centre. This was the first major study of library use,
and Urquhart’s work preceded the use study done at the
University of Chicago by Fussler and Simon (1969), as well
as the formulation by Trueswell (1969) of his 80/20 Rule of
library use. The fact that Urquhart studied journal use at the
Science Museum Library is of historical significance, for
this was the library once headed by Samuel C. Bradford.
Bradford (1934) formulated his Law of Scattering at this
library, which he turned into Britain’s central interlibrary
loan library for scientific journals.

Urquhart (1958; Urquhart & Bunn, 1959) analyzed
53,216 “external loans” or loans made in 1956 by the SML
to outside organizations. These loans came from 5632 titles
out of an estimated 18,000 titles held by the SML, of which
9120 were current, with the remainder being noncurrent. Of
the serials titles used, 2769 were noncurrent. Urquhart
found that around 1250 titles—or less than 10% of the
titles—were enough to satisfy 80% of the external demand.
Moreover, Urquhart compared the external use of the serials
at the SML with the holdings of these titles by major U.K.
libraries as listed in theBritish Union List of Periodicals.He
found a direct correlation of the external use of the titles at
the SML with the number of their holdings in U.K. libraries
(i.e., the more heavily a serial was borrowed on interlibrary
loan, the more widely it was held). As a result, Urquhart
(1958) came to the following conclusion:

External organizations will naturally borrow from the Sci-
ence Museum Library scientific literature which they do not
hold themselves, or which they cannot obtain from some
more accessible collection. Thus, the external loan demand
on the library is, in general, only a residual demand. . . .
Nevertheless, possibly because so many external organiza-
tions (some 1200) use the Science Museum Library, it
appears. . .that the use of the copies of a serial in the library
is a rough indicator of its total use in the United Kingdom.
(p. 290)

Many years later, Urquhart (1981) formulated his law in
the following manner:

The fact that the heaviest inter-library demand is for peri-
odicals, which are held by a number of libraries is of major
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importance in designing inter-library services. To draw at-
tention to this relationship I have called it “Urquhart’s law.”
It means, for instance, that the periodicals in the Boston Spa
collection which are rarely used are unlikely to be used to
any appreciable extent in a British university. There may be
some exceptions to this deduction. . . .Nevertheless, the law
is very important in considering the need for a central loan
collection. (p. 85)

Up to now, we have been dealing with a brilliant piece of
Library Arithmetic. However, Urquhart made an attempt to
take the matter one step further and base his findings on a
probability model. By doing this, he became one of the first
persons to try to apply probability to library use. In the
papers presenting these findings, Urquhart (1958, p. 291;
Urquhart & Bunn, 1959, p. 21) assumes that the external
loans at the SML were random, adopting the Poisson model
to construct hypothetical distributions of journal use that
would result from this model without actually fitting the
Poisson to the SML data. Here, Urquhart is on more shaky
ground, as he manifests ignorance about the working of this
distribution. This is seen in his book,The Principles of
Librarianship, in which Urquhart (1981) calls upon librar-
ians to have an understanding of the Poisson distribution
and makes the following statement: “Poisson was studying
the number of grooms kicked to death by horses in the
Prussian army” (p. 76). Urquhart thus attributes to Poisson
the analysis done by von Bortkewicz on Prussian soldiers
being kicked to death by horses long after Poisson himself
was dead. The fact that the same journals dominate both
supralibrary and intralibrary use defies the concept of ran-
domness even from the linguistic point of view, much less
the statistical.

From the tables and data presented by Urquhart in his
papers, I was able to reconstruct a fair approximation of the
total distribution of the 1956 external loans at the SML.
With 18,000 titles and 53,216 loans, the mean external loans
per title was 2.96. Using an antique method to derive the
standard deviation off tabular data, I estimated the variance

of the distribution at 138.1—needless to say, significantly
higher than the mean of 2.96. I then fitted the Poisson
distribution to Urquhart’s data, using Pearson’s chi-square
goodness-of-fit test. The results are presented in Table 1. In
doing so, I made an interesting discovery. Urquhart’s major
finding of 1250 titles accounting for 80% of the external
uses was a probablistic impossibility by his own theoretical
model. Urquhart’s high-use class ranges from ten external
loans to 382 external loans. However, the denominator of
the Poisson equation—based on the factorials of the number
of successes—rises exponentially faster than the numerator
of the equation—based on the mean to the power of the
number of successes, quickly crushing out the probability of
any observation varying too far above the mean. At a mean
of 2.96, the Poisson probability of ten external loans was
0.00073, and the total probability of all the titles, which
accounted for ten external loans or above, was 0.001. The
goodness-of-fit test resulted in a chi-square of 235,362.9,
and a chi-square at anything above 16.75 meant rejection of
the Poisson at the 0.005 level.

The reasons for the failure of Urquhart’s data to fit the
Poisson can be located in two requirements emphasized by
Thorndike (1926) in a study of the applicability of this
distribution to practical problems. According to Thorndike,
the successful utilization of the Poisson requires that the
occurrences constituting the sample under study be the
result of “uniform” and “independent” trials. He then clar-
ified these terms in the following manner:

The term ‘uniform’ applies, of course, not to the results of
the trials (or samples) but to the essential conditions under
which they are obtained, and ‘independent’ is used with the
meaning that the result of one trial (or sample) does not
affect the occurrence of the event in any other trial (or
sample). (p. 607)

With this statement, Thorndike puts his finger on the
two stochastic processes—“inhomogeneity” and “conta-

TABLE 1. Chi-square test of the goodness-of-fit of the Poisson distribution to the external loans attributable to the titles held at the Science Museum
Library in 1956.a

Number of
external
loans

Observed
number of

titles in
class

Estimated
number of
external
loans per

class

Estimated
percent of

total
external
loans per

class

Poisson
probability
per class

Expected
number of

titles in
class Chi-square

0 12,368 0 0.0 0.052 936.1 139,615.8
1 2,190 2,190 4.1 0.154 2,767.4 120.5
2 791 1,582 3.0 0.227 4,090.9 2,661.8
3 403 1,209 2.3 0.224 4,031.5 3,265.8
4 283 1,132 2.1 0.166 2,979.7 2,440.6
5–9 714 5,355 10.1 0.176 3,176.7 1,909.2
10–382 1,251 41,748 78.5 0.001 17.8 85,349.3

Totals 18,000 53,216 100.0 1.000 18,000.0 235,362.9

a Poisson distribution rejected at 0.005 level at any chi-square above 16.75. Mean5 2.96 external loans per title. Variance estimated to be 138.1.
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gion”—by which a Poisson process results in the negative
binomial distribution. As a matter of fact, so closely related
is the Poisson distribution to the negative binomial that
Stigler (1982) points out that, although the Poisson distri-
bution appears in Poisson’s 1837 study of French judicial
decisions as the limit to the binomial, he actually derived his
distribution directly as an approximation to thenegative
binomial cumulative distribution.

With respect to the first process, it is especially important
for the observations in the set under study to be homoge-
neous in terms of an equal propensity to produce occur-
rences, if the distribution is to fit the Poisson. Under the
conditions of high homogeneity, events occur randomly
over the observations in the set, and this results in the
observations clustering tightly around the mean. Von Bort-
kiewicz was aware of the need for homogeneity, causing
him to exclude from his set four Prussian army corps
organizationally different from the other ten. The need for
homogeneity makes the test for the Poisson a good method
in industrial inspection to determine whether manufacturing
processes are creating products within required specifica-
tions. Inhomogeneity results in what is technically known as
“over-dispersion.” Using the example of a set of truck
drivers, whose mean accident rate is one accident every 3
years, Borel (1943/1962, pp. 44–46), the noted French
expert on the Poisson distribution, explains in the manner
below how over-dispersion arises, when the truck drivers
differ in their probability of having an accident:

In the language of the calculus of probabilities, we sum up
this increase of the proportion of cases where the number of
accidents is 0, 2, 3, and the inevitably correlative decrease
of cases where the number of accidents is equal to unity,
which is the mean, by saying that the observeddispersionis
greater than the normal dispersion. It is a general law of the
calculus of probabilities that, in this case, the material
observed is not homogeneous: the probabilities are not
equal for all individuals, but above the average for some and
therefore below the average for others. (p. 46)

Scientific journals are notoriously inhomogeneous in
size, quality, and social influence. The difference in quality
and social influence is a function of the fact that scientific
talent is not randomly or uniformly distributed but concen-
trated in a relatively few persons. As Bensman and Wilder
(1998) have proven with the help of the National Research
Council database, the better scientists tend to concentrate at
a few traditionally prestigious institutions and publish in a
certain set of journals, of which those published by U.S.
associations form an essential part. The resulting inhomo-
geneity of scientific journals manifests itself in faculty rat-
ings, citation patterns, as well as in both intralibrary and
supralibrary use.

Inspection of the table fitting the Poisson distribution to
Urquhart’s data reveals extreme inhomogeneity and over-
dispersion, whose key points are highlighted by where the
chi-squares are the greatest. For example, whereas the ex-

pected number of titles in the zero class is 936.1, the
observed number is 12,368; whereas the expected number
of titles in the high-loan class is 17.8, the observed number
is 1,251; and there is a corresponding overprediction by the
Poisson of the number of titles in the three classes—2 , 3 ,
and 4 external loans—surrounding the mean of 2.96 such
loans. Here we see at work the double-edged Matthew
Effect and the zero-sum game underlying the scientific
information system.

The classic model of the effect of inhomogeneity in a
Poisson process is the gamma Poisson version of the neg-
ative binomial distribution, and the construction of this
model was made possible by the almost simultaneous break-
throughs by Pearson and von Bortkewicz. Pearson (1905/
1906, pp. 208–210, 1915/1917, 1956c, p. 554) himself
became intrigued with the potential of the negative binomial
of the form (p 2 q)2n, wherep 2 q 5 1. His interest was
shared by other participants in the British biometric revo-
lution. For example, Pearson (1915/1917) reported:

Thus, if two or more of Poisson’s series be combined term
by termfrom the first, then the compound will always be a
negative binomial. This theorem was first pointed out to me
by ‘Student’ and suggested by him as a possible explanation
of negative binomials occurring in material which theoret-
ically should obey the Law of Small Numbers, e.g. ‘Stu-
dent’s’ own Haemacytometer counts. Of course, the nega-
tive binomial may quite conceivably arise from other
sources than heterogeneity. . . . (pp. 139–140)

The above passage outlines in an unclear fashion the
essential elements of the inhomogeneity model, whose pre-
cise mathematical development was accomplished by Pear-
son’s prote´gé, George Yule, in collaboration with the epi-
demiologist, Major Greenwood.

The utility of the negative binomial was first brought to
the attention of statisticians by Yule (1910) in a paper read
before the Royal Statistical Society in December 1909. In
this paper, Yule dealt with distributions that arise when the
causal effects act cumulatively on homogeneous popula-
tions. For such distributions, he derived a law by which the
probabilities were calculated by the successive terms of the
binomial expansion ofpr (1 2 q)2r, and he was able to fit
this distribution to two sets of data on diseases and one on
divorces that were not amenable at all to fitting by an
ordinary binomial series. This paper was particularly nota-
ble, because in it Yule derived from this negative binomial
series a formula for the Type III gamma distribution, which
Pearson had originally calculated on the basis of the normal
binomial expansion of (p 1 q)r.

As described by Greenwood (Newbold, 1927, pp. 536–
537), it was the needs of the Royal Flying Corps during
World War I that led Greenwood and Yule to construct the
gamma Poisson version of the negative binomial distribu-
tion. At that time, the question arose as to whether to allow
a pilot who had suffered a small accident to fly again. The
problem emerged whether it would be possible to distin-
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guish by analysis of frequency distributions of accidents
between three possibilities: (1) that accidents are accidents
in the sense of being “simple” chance events; (2) that the
distribution of first accidents is that of “simple” chance
events; and (3) that the distribution whether of first or
subsequent accidents differs in a specific way from the
“simple” chance scheme. As no hypothesis could be tested
from Flying Corps data because of the question of unequal
exposure to risk, Greenwood and Yule confined their inves-
tigation to the statistics of trivial accidents among female
workers in munitions factories.

In solving this problem, Greenwood and Yule (1920)
based themselves upon the Poisson, taking advantage of the
following characteristic of this distribution that makes it
particularly applicable to time and space problems: the sum
of a set of numbers, each following a separate Poisson series
(about different means), is itself a Poisson series. As a
result, time and space units can be split into smaller ones,
cells can be divided, periods of exposure can be changed, or
the records of separate individuals can be summed into
records of groups; and each of the single sets as well as the
sum of the whole will yield a Poisson series. The solution,
for which Greenwood and Yule opted was based on two
assumptions: (1) each individual worker had a different
mean rate of accidents that was constant throughout the
period, thus forming her own Poisson series; and (2) the
mean accident rates of the workers were distributed over the
population according to a theoretical curve. For the latter,
Greenwood and Yule considered the normal curve of error
but rejected it as not being positively skewed enough. Not-
ing that the choice of skew curves was arbitrary, they
selected Pearson’s Type III gamma distribution, but in the
form derived by Yule off the negative binomial series.
Greenwood and Yule found that their gamma Poisson
model gave reasonable fits to observed accident rates in
tests of fourteen sets of data on female munitions workers.
In a paper read before the Royal Statistical Society, New-
bold (1927) extended and confirmed the work of Green-
wood and Yule, and together these papers established the
concept of “accident proneness,” with the gamma distribu-
tion serving as its mathematical description.

As a demonstration of the continuous spread of proba-
bilistic methods to other disciplines, two other papers,
which were presented to the Royal Statistical Society on the
gamma Poisson distribution, should be mentioned at this
point. In 1957, Ehrenberg (1959) read a paper that extended
its use to marketing as the model for consumer buying, with
the purchases of individual buyers following the Poisson
distribution in time and the average purchasing rates of the
different consumers being proportional to the Pearson Type
III distribution. Twenty-five years later, Burrell and Cane
(1982) presented a paper that used this distribution as the
basis for the construction of a stochastic model for the
circulation of library books, with each book circulating
randomly at a given mean rate and the distribution of the
mean rate of use over the book collection in the gamma

form. Burrell and Cane found that the gamma Poisson
model approximated Trueswell’s 80/20 Rule under certain
conditions.

In the light of the work of Ehrenberg, Burrell, and Cane,
the potential of the gamma Poisson model became evident,
when a Baton Rouge river boat recently admitted that 80%
of its revenues comes from 20% of its customers. Since
Bernoulli’s Law of Large Numbers dictates that the percent-
age of loss on the amount wagered must ultimately equal the
percentage of the riverboat’s gross profit with a certainty of
one on the condition of a sufficient number of trials, the
admission appears to justify the characterization of the
State’s gambling revenues by a conservative Louisiana leg-
islator as “a tax on stupidity,” the gamma distribution en-
suring that the tax is a steeply progressive one.

The other reason Urquhart’s data fail to fit the Poisson
may be traced to Thorndike’s requirement that the trials be
“independent” in the sense that “the result of one trial (or
sample) does not affect the occurrence of the event in any
other trial (or sample).” In my opinion, this condition does
not hold for most phenomena in library and information
science. In particular, it does not hold for library uses
because of the following factor. When library materials are
borrowed, the patrons borrowing them form opinions; and
these opinions are communicated to other patrons, raising
and lowering the probabilities of the materials being bor-
rowed again. The process of one trial affecting the outcome
of another trial is encompassed in the concept of “conta-
gion.” At this point, I must admit that I am somewhat
confused about the logical implementation of contagion
because of these reasons: (1) it is sometimes impossible to
distinguish the effect of contagion from that of inhomoge-
neity; and (2) the process of contagion in library and infor-
mation science is counteracted by the growing obsolescence
of literature as it ages, especially in the sciences.

The first problem was posed by Feller (1943) in his
classic conundrum about “true contagion” and “apparent
contagion.” Feller noted that this conundrum first arose in
the paper by Greenwood and Yule (1920), in which they
developed the gamma Poisson version of the negative bi-
nomial. Feller considered this version a case of “apparent
contagion,” because it was based on the inhomogeneity of
the observations in the set, and not upon one trial affecting
another. However, in this paper Greenwood and Yule (1920,
pp. 258–264) also experimented with a model involving
“the assumption that the happening of the event not only
improves the prospects of the successful candidates but
militates against the chances of those who had hitherto
failed” (p. 264). They developed a mathematical solution
for this problem, but by their own admission their solution
was not in a form very suitable for computation. Describing
this model as “true contagion,” Feller ascribed the complex-
ity of their formulas to the very general nature of their
scheme. He then pointed out that on the basis of a special
model of true contagion, which turned out to be the simplest
case of the more generalized Greenwood and Yule scheme,
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George Po´lya was led to exactly the same distribution that
Greenwood and Yule had constructed on the basis of inho-
mogeneity. The contagion model used by Po´lya was an urn
model with balls of two different colors, where the drawing
of a ball of one color is followed by the replacement of this
ball along with more balls of the same color, thereby in-
creasing the probability of drawing this color, and decreas-
ing the probability of drawing the other color. As a result of
Feller’s finding, if one encounters the negative binomial,
one does not know from which process it arose—whether
inhomogeneity or contagion—and there is a good possibil-
ity in library and information science that it could have
arisen by both stochastic processes operating simulta-
neously and interactively.

The difficulties such a situation can cause for the mod-
eling of library use emerges as soon as one approaches the
problem of the obsolescence of literature over time. This is
evident in the studies of monograph use described below,
and the factors taken into account in these studies are also
operative in the use of journal backfiles. Basing himself on
inhomogeneity in his studies of monograph use, Burrell
(1985, 1986, 1987) built into his gamma Poisson model an
aging factor, by which the desirability of the monographs
measured by the gamma distribution decays exponentially
at the same rate for all monographs, leading to stable
distributions over time and a growing zero class as other
monographs merge with those already there because of their
initial zero desirability. Moreover, in their study of mono-
graph use, Fussler and Simon (1969, pp. 5–7, 142–143,
187–188) assumed that, within a specified period of time,
the use of a particular book was entirely a random process,
independent from its use in a previous time period and
dependent only upon the underlying probability estimated
by observing the use of a group of books with common
characteristics. Fussler and Simon tested for “contagion,”
(i.e., whether the use of a book in one year substantially
raises the probability that it will be used in the next year),
leading to a group of books showing progressively greater
uses over the years. Their assumption of independence of
use from one time period to another seemed to be supported
by the data, but they admit that their test was made imper-
fect by the overall decrease in the use of books. Fussler and
Simon also appear to negate their own conclusion with the
statement that “a not unexpected though crucial finding was
that past use over a sufficiently long period is an excellent
and by far the best predictor of future use” (p. 143). As a
sign of the possible operation of both inhomogeneity and
contagion, Fussler and Simon noted that “the observed
distributions do not resemble the Poisson closely but have a
much higher variance” (p.187).

All this leaves me scratching my head as to the influence
of contagion. Is use of library materials over time in relation
to each other determined solely by their initial desirability?
Or does contagion act by slowing the inevitable obsoles-
cence of some materials as against others? Or is there a time
definition problem, and some materials would show first

increasing use because of contagion and then decreasing use
because of obsolescence slowed by contagion? Then, too,
what creates desirability in the first place—inhomogeneities
in quality, as judged independently by individuals, or some
form of social communication?

Although contagion must play some sort of role, the
problem of obsolescence does seem simpler to handle log-
ically the way Burrell did i.e., on the basis of inhomogeneity
without taking into account the influence of contagion.
Moreover, this approach can be integrated with the transi-
tion from the negative binomial to the Poisson through the
views of Borel (1950/1963, pp. 61–66) on entropy. Entropy
is a measure of the amount of disorder or randomness in a
system, and Borel equated it with homogeneity. In his view,
inhomogeneity represents the opposite or order. According
to Borel, order is less probable than disorder, as it requires
work or energy for its creation, and he declared that “vital
phenomena usually consist in the creation of states not
considered probable” (p. 64). From this standpoint, he de-
fined the guiding principle of entropy in the following
manner: “The principle of entropy. . . states that a closed
system—i.e., one that does not receive any energy from an
external source—will necessarily evolve by passing from
less probable states toward more probable ones” (p. 61).
Analyzing this principle on the cosmic scale and rephrasing
it in terms of inhomogeneity vs. homogeneity, Borel con-
cluded that “the universe is steadily evolving from the
heterogeneous toward the homogeneous, i.e., from a rela-
tively ordered state toward a state that is more and more
disordered. . .” (p. 66).

An application of Borel’s views on entropy to Burrell’s
gamma Poisson model leads to the hypothesis that, as the
desirability of a set of library materials decreases with age
and the set receives less and less outside energy, its use
should decline, with an ever diminishing mean and the
collapse of the variance toward this mean. When the vari-
ance equals the mean, the materials could be considered in
a state of equilibrium marked by rare and random events. It
should then be feasible to shift these materials to some form
of remote storage.

Final Considerations and a Practitioner
Recommendation

I will not discuss in this paper the debates provoked by
the introduction of the negative binomial into library and
information science. This topic is thoroughly covered in
Bensman and Wilder (1998, pp. 161–171). Here I only want
to emphasize three general conclusions, at which I arrived
as a result of research on the scientific information market
and testing the National Research Council database.

First, the skewed distributions found in library and in-
formation science and described by empirical informetric
laws are not unusual. The discovery of these laws was only
a part of a broad process of uncovering the skewed distri-
butions underlying phenomena in many other disciplines
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that took place after Pearson’s devastating assault on the
normal paradigm. As a matter of fact, the discovery of these
skewed distributions was taking place even before Pearson.
For example, the doctrine of Karl Marx with its concentra-
tion of the means of production and impoverishment of the
masses can be considered in many respects as the drawing
of wrong conclusions from a correct observation that the
stochastic processes operative in the negative binomial are
operative in human society. In the paper in which he derived
the first informetric law—the Inverse Square Law of Sci-
entific Productivity— Lotka (1926) was well aware that he
had found nothing unusual. Thus, he wrote:

Frequency distributions of the general type (1) have a wide
range of applicability to a variety of phenomena, and the
mere form of such a distribution throws little or no light on
the underlying physical relations. (p. 323)

To back up these statements, Lotka cited the work of
Corrado Gini on the inequality of income within a popula-
tion and John Christopher Willis on the distribution of
species. Perhaps the distinguishing feature of frequency
distributions within library and information science is the
fuzzy nature of the sets, within which they arise. This
fuzziness is a function of the way disciplines overlap and
share the same literature. From this perspective, the two
most important informetric laws, which set apart library and
information science from other disciplines, are Bradford’s
Law of Scattering and Garfield’s Law of Concentration.

Second, the working out of the probability distributions
and stochastic processes underlying library and information
science is primarily the accomplishment of the British and
those working in the British tradition. Therefore, it is to the
scientific history of Britain, to which one must turn in order
to gain an insight into the nature of these distributions. As
further proof of the need to study British work, it should be
noted that Garfield derived his Law of Concentration, which
underlies the operations of the Institute for Scientific Infor-
mation, off Bradford’s Law of Scattering by transposing the
latter from the level of a single discipline to that of science
as a whole. This need holds true for the introduction of the
negative binomial into library and information science,
which was primarily the work of Burrell at the University of
Manchester as well as of Tague and Ravichandra Rao at the
University of Western Ontario. The debate over the negative
binomial in library and information science was a British
and Canadian one, in which the Americans were for the
most part silent. I came to the negative binomial through an
observation by Price, who was born in London and received
his doctorates at the University of London and Cambridge
though he taught at Yale, that it was the model for the social
stratification of science posited by Robert Merton. As a
result of this, the Bensman and Wilder (1998) paper can be
regarded as an attempt to merge library and information
science with the American sociology of Robert Merton and
the British biometrics of Karl Pearson.

And, finally, as a result of my reading about probability
distributions and working with them, I have come to adopt

what Särndal (1977) has described as the “agnosticism” of
the modern statistician in such matters. In a telling passage,
Särndal wrote:

At the end of the nineteenth century a rapid development
occurred. The illusion of the normal law as a universal law
of errors was shattered. Instead, there emerged conceptions
of data distributions that have the characteristics of agnos-
ticism still prevailing today, as shown in our reluctance, or
even inability, to state that given data are distributed ac-
cording to a normal law, or any other narrowly specified law
for that matter. If we do adopt a certain distributional law as
a working model, we usually acknowledge the fact that this
may be just an adequate approximation. Or, as in modern
studies of robustness, we may assume only that the true
distribution is a member of some family of distributions, or
we take yet a further step and assume a nonparametric
model. (p. 420)

My statistical adviser at the LSU Department of Exper-
imental Statistics put the case more succinctly: “We have in
our computer lab thirty computers, each named after a
different distribution, and, if we ever get the money to buy
thirty more computers, I am sure that we will have no
problem in coming up with another thirty distributions, after
which to name the new ones.”

I was led to the agnostic view by the realization that there
are two major difficulties in fitting library and information
science data to precise theoretical distributions. First, subtle
changes in conditions can lead to shifts in the underlying
stochastic processes being modeled. Second, the numbers
we obtain are a function of the logical structure of our sets,
and because of their inherent fuzziness, library and infor-
mation science sets are full of contaminants resulting in
outliers that distort the mathematical parameters of any
theoretical model. Moreover, much of what I read on prob-
ability distributions appeared to deal with mathematical
refinements that would be overwhelmed by the faults inher-
ent in library and information science data.

Because of my conversion to agnosticism, I came to the
conclusion that all that is necessary for practical statistical
research in library and information science is to follow these
simple procedures: (1) utilize the index of dispersion test
that determines whether you are dealing with the Poisson by
comparing the variance to the mean (Elliott, 1977, pp.
40–44, 73–75); (2) if the variance is found significantly
greater than the mean—and it almost invariably is—assume
that you are dealing with the negative binomial or a distri-
bution closely akin to it; (3) perform the appropriate loga-
rithmic transformations of your data to approximate the
correct law of error; and (4) proceed to analyze the ques-
tions that really interest you.
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